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1 What is Uncertainty?

Every physical measurement has some uncertainty. Knowing the uncertainty is essential to testing
physical theories. For example, suppose a new theory of matter predicts the mass of some new
particle to be 137 MeV/c2. You set out to experimentally measure the mass and you get 141 MeV/c2.
Do these numbers agree? It depends on the uncertainty. If the uncertainty in our measurement was
±5 MeV/c2 then our measurement is consistent with the theory, but if the uncertainty was 1 MeV/c2

we would have to conclude that the theory is inconsistent with the measurement.
Experimental measurements never yield exact results. For example, suppose your physics in-

structor asked you to measure the length of a small table with a meter stick. You would carefully
align one end of the meter stick with one edge of the table then look at the other edge to read off the
length. You read off the length by looking at the marks on the meter stick and determining which
one lines up with the edge of the table. Is there uncertainty in the measurement? Yes, because you
can’t read the scale more finely than about a millimeter. The smallest marks on a meter stick are
usually one mm apart. The best you could probably do would be to say that the length of the table
is in some range.

Suppose you make the measurement described above and find the length to be between 61.2 and
61.4 cm. Your physics instructor would like you to write a short lab report on your measurement.
(I know, physics instructors ask you to do some weird things.) How would you report the length?
You could say “the length of the table is between 61.2 and 61.4 cm.” This would be correct, but
physicists have a convention for specifying the results of a measurement; we specify a best estimate
plus or minus an uncertainty. In this case, the best estimate of the length would be the value in the
middle of the range or 61.3 cm. The uncertainty specifies how much bigger or smaller the length
could be or in this case 0.1 cm. In this example, the range 61.2 to 61.4 cm should be specified as
61.3± 0.1cm.1 In general,the result of a measurement of some quantity x is stated as

(measured value of x) = xbest ± δx, (1)

where xbest is the best estimate of x and δx is the uncertainty in the estimate. If the measurement
of x is between xmax and xmin, then

xbest ≈
xmax + xmin

2
, (2)

∗Portions of this manual are adapted from “An Introduction to Error Analysis” by John R. Taylor.
1The ± symbol is read as “plus or minus”.
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and

δx ≈ xmax − xmin

2
. (3)

2 Reporting Uncertainties and Significant Figures

A few basic rules for stating uncertainties are worth emphasizing. Uncertainty estimates are, after
all, just estimates so they should not be stated with too much precision. In our table example,
it wouldn’t make any sense to quote our measured length as 61.3 ± 0.1239856 cm. It simply isn’t
possible to know the uncertainty to seven significant figures. Uncertainties are sometimes quoted to
two significant figures, but one is usually sufficient. For our purposes we can use the following rule.

Rule for Stating Uncertainties: In an introductory laboratory, experimental un-
certainties should be rounded to one or two significant figure.

For example, suppose we make the following three measurements of a time interval: 2.33, 2.43, and
2.28 seconds. Using a calculator, we compute the uncertainty using Eq. 3. Our calculator reads
0.075, but according to the rule above we would round to one significant figure and report the
uncertainty as 0.08 seconds.

Once the uncertainty has been rounded, we must also consider the number of significant figures
to keep in the best estimate. A statement like

measured speed = 6056.78± 3 m/s

is obviously ridiculous. The uncertainty of 3 m/s means that the digit ’6’ in the fourth place of
6056.78 might really be as small as ’3’ or as large as ’9’. Clearly the trailing digits ’7’, and ’8’ have
no significance at all, and should be rounded off. The proper way to state the result is

measured speed = 6057± 3 m/s.

The general rule for stating the best estimate of a measured quantity is as follows.

Rule for Stating Measured Values The least significant figure in any measured
value should be of the same order of magnitude (in the same decimal position) as the
uncertainty.

For the example of the three measured values of a time interval (2.33, 2.43, and 2.28 seconds) we
have already used the first rule to determine that the uncertainty should be stated as 0.08 seconds.
If we used a calculator to compute the average of the three values, it would read 2.34666667. Using
the above rule the best estimate for the time interval is 2.35 and the final result with uncertainty
should be reported as 2.35± 0.08 seconds.

For the sake of clarity, there are two other things to keep in mind when reporting measured
values. The first is that since the uncertainty and the best estimate both have the same units it is
clearer to write the result as 2.35± 0.08 seconds than 2.35 seconds ±0.08 seconds. Second, we will
often measure numbers that are stated in scientific notation. Suppose we measured a charge to be
1.61× 10−19 coulombs with an uncertainty of 5× 10−21 coulombs. The clearest way to report this
is (1.61± .05)× 10−19 coulombs rather than 1.61× 10−19 ± 5× 10−21 coulombs.

3 Estimating Uncertainties

There are an unlimited number of ways to estimate uncertainty. In fact in complex scientific research
it isn’t unusual to estimate the uncertainty in a measurement in several different ways in order to
cross check the estimates.
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Reading Scales In the table example above we got our uncertainty estimate by simply estimating
the accuracy to which we thought we could read the meter stick. This is a quick and simple way to
get an estimate, but is somewhat subjective.

Digital Readouts Most modern lab equipment is digital. A modern voltmeter is a good example.
Suppose we used a voltmeter to measure the voltage across a battery and the digital display read 1.23
volts. What is the uncertainty in this measurement. If we assume the voltage of the battery doesn’t
change in time and that the voltmeter is calibrated properly, the accuracy of the measurement is
given by the accuracy of the display. The display would read the same if the actual voltage where
anywhere in the range from 1.225 to 1.234 volts. Using the equation for the best estimate (Eq. 2),
we get 1.230 volts and using equation for the uncertainty (Eq. 3) the uncertainty is 0.005 volts. Our
best estimate of the battery voltage is then 1.230 ± 0.005 volts. In other words, when reading a
digital display the uncertainty is 1/2 the least significant digit that can be displayed.

3.1 Systematic Uncertainties

We made two assumptions in this uncertainty estimate. One was that the battery’s voltage didn’t
fluctuate during the measurement. If it did we would have to use some other technique to estimate
the uncertainty like the repeated measurements technique described below.

The other assumption was that the voltmeter was properly calibrated. If it wasn’t, then our best
estimate wouldn’t be correct. A calibration uncertainty like this is an example of a systematic
error. Systematic errors are errors associated with a flaw in the equipment or in the design of
the experiment. Systematic errors cannot be estimated by repeating the experiment with the same
equipment. In the battery example, the best way to deal with the systematic error would be to
recalibrate the voltmeter. If this isn’t possible, then we would have to somehow make an estimate
of the possible size of the systematic error and include it in our uncertainty estimate. Systematic
errors are insidious because the experimenter usually doesn’t know they are present. If they did they
would correct the flaw before doing the experiment. The OPERA experiment’s mistaken observation
of faster than light neutrinos is good example of this kind of hidden error that can lead even good
experimental physicists astray2.

3.2 Random Errors

Many measurements involve uncertainties that can’t be estimated by reading a scale or a digital
display. For example, if I measure a time interval using a digital stopwatch, the main source of
uncertainty isn’t usually from the accuracy of stopwatch display, but is from the variability of
my reaction time. A good way to estimate the uncertainty in this case would be to make repeated
measurements. Errors that can be reliably estimated by repeating measurements are called random
errors.

Let’s say we wished to measure the time it takes a ball to fall from top of a building to the
ground. We could measure the time and uncertainty by dropping the ball several times and time
each fall with a stopwatch. Suppose we do this five times and get the following five times (in seconds)

2.3, 2.4, 2.6, 2.5, 2.4.

2See http://en.wikipedia.org/wiki/Faster-than-light neutrino anomaly.
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We could just use the maximum and minimum values to estimate the best value for the time, but a
better technique would be to take advantage of all the data and find the average or mean time,

tbest =
2.3 + 2.2 + 2.6 + 2.5 + 2.4

5
= 2.4 seconds.

The range of measured values has a minimum of 2.2 seconds and a maximum of 2.6 seconds. By
Eq. 3 this gives an uncertainty estimate of

δt ≈ 2.6− 2.2

2
= 0.2 seconds.

The measured time is then 2.4± 0.2 seconds.
To summarize, if we make n measurements of some quantity x then

xbest = x̄ =
1

N

N∑
i=1

xi (4)

and

δx ≈ xmax − xmin

2
, (5)

where the bar above the x indicates the average or mean. Eq. 3 gives a quick and dirty estimate of
the uncertainty, but it depends on the two extreme data values. This means that it is very sensitive
to outlying values. Extreme deviations are rare, but if they do happen the uncertainty estimate of
Eq. 3 will overestimate the uncertainty.

3.2.1 Standard Deviation

A much more robust and statistically significant estimate of uncertainty is the standard deviation3.
It is the root mean square deviation of the data values from the mean and is denoted σx

σx =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 . (6)

The standard deviation of the data for the ball dropping experiment described above is σt = 0.1
seconds (check this yourself). This is smaller than the estimate of Eq. 3 and doesn’t cover the whole
range of the data, but still gives an estimate of the dispersion of the data points. It’s significance is
that in most cases4 if we did one more measurement there would be a 68% chance of this measurement
lying in the range from x̄ − σx and x̄ + σx. There is a 95% chance it would be within ±2σx of the
mean, and a 99.7% chance it would be within ±3σx of x̄.

3Technically Eq. 6 is called the sample standard deviation and is used when only a sample of the total
population of possible measurements is used for the calculation. This is almost always the case for measurements
made in a physics lab. See Appendix E of “An Introduction to Error Analysis” by John R. Taylor.

4By “in most cases” I mean that the data is drawn from a population that is normally distributed. See Chapter 5
of “An Introduction to Error Analysis” by John R. Taylor.
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3.2.2 Standard Deviation of the Mean

The standard deviation is a quantitative measure of the uncertainty in a single measurement. In
other words, if we measure a time for a single drop of the ball we are 68% certain that this time will
be within one standard deviation of the best estimate time for the drop and almost positive (99.7%
certain) it will be within three standard deviations of the best estimate time. What is the best
estimate of the uncertainty in the value of themean? Again, we can be statistically quantitative. If
we made a second set of N measurements of the drop time we would find that 68% of the time, the
mean of these measurements would be within one standard deviation of the mean,

σt̄ =

√√√√ 1

N(N − 1)

N∑
i=1

(t− t̄)2 =
σt√
N

, (7)

and 95% of the time within 2σt̄ etc. Note that the standard deviation and the standard deviation of
the mean are related by a factor of

√
N . The distinction between σt̄ and σt is a subtle but important

one. The standard deviation, σt, is the uncertainty in a single trial and the standard deviation of
the mean, σt̄, is the uncertainty in the mean of N trials. In our introductory physics laboratories
we typically make several measurements of some quantity, x, and average them to try to determine
some xbest. In this case

xbest = x̄, (8)

and
δx = σx̄ =

σx√
N
. (9)

Let’s work through an example. Suppose we measure the time it takes the ball to fall from the
roof to the ground five times and get the following five values for the time

2.35, 2.48, 2.46, 2.51, 2.62,

where all the times are in seconds. Taking the average we find that tbest = 2.484 seconds. The
standard deviation, σt = 0.097. This means that if we made one more measurement, we would have
a 68% of getting a time in the range from tbest − σt = 2.387 and tbest + σt = 2.581. The standard
deviation of the mean σt̄ = σt√

5
= 0.043. We would therefore report our result for the best estimate

of the time as
t = 2.48± 0.04 seconds.

Notice that the standard deviation of the mean is inversely proportional to
√
N , this suggests that

the larger the number of measurements we make the smaller the uncertainty in the average5. This
means that if our experiment is dominated by random uncertainty, we can always get a more accurate
result by making more measurements.

When we decide to make a measurement using repeated trials we have to decide how many trials
to do. The bare minimum is two, but this doesn’t give a very good estimate of the uncertainty.
Taking at least 3 measurements allows us to determine if one of our measurements is in error. For
example, if we made three measurements of a time interval and got 2.4, 6.5 and 2.6 seconds we
could be quite sure that our second measurement was wrong (maybe we forgot to reset the stop
watch). If we had only made two measurements we might not catch our error. The uncertainty
in the mean goes down as we take more measurements, but since σx ∝ 1/

√
N there is a point of

5Although this sounds reasonable, it actually takes quite a bit of work to prove. See “An Introduction to Error
Analysis” by John Taylor for the proof.
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diminishing returns. The improvement in the uncertainty when we take five measurements instead
of three is about the same as the improvement in going from five measurements to ten. In practice,
five measurements is usually optimal.

4 Propagation of Uncertainty

Suppose we wanted to determine the perimeter and area of a rectangular table top from measure-
ments of its width w = 76.4 ± 0.2 cm and its length ` = 153.3 ± 0.6 cm. How would we determine
the uncertainties in the perimeter and area? Let’s compute the perimeter first. The perimeter
p = 2w + 2` = 2(w + `). The highest probable value for the perimeter is then

pmax = 2(w + δw) + 2(`+ δ`) = 2(w + `) + 2(δw + δ`),

and lowest probable value is

pmin = 2(w − δw) + 2(`− δ`) = 2(w + `)− 2(δw + δ`).

We can use Eq. 3 to get the uncertainty in p

δp ≈ pmax − pmin

2
= 2(δw + δ`).

For the example at hand, δp = 1.6 cm, so using the rounding rules of Section 2 gives p = 459±2 cm.
You can always get a crude estimate the uncertainty using this brute-force method of computing

the maximum and minimum values and using Eq. 3, but it tends to overestimate random uncertain-
ties. This is because to get the maximum uncertainty in the sum both ` and w must conspire to
be overestimates. If the uncertainties are independent and random, then an underestimate in the
measurement one of the variable, ` for example, is partially compensated for by an overestimate
in the measurement of the other variable, w in this case. Statistical theory tells us that if some
quantity q = x+y and if x and y are normally distributed then the sum is also normally distributed
with standard deviation

σq =
√
σ2
x + σ2

y. (10)

This is always less than the sum of the standard deviations of x and y. When we combine two
numbers by squaring them, adding the squares, and taking the square root as in Eq. 10, the numbers
are said to be added in quadrature. Eq. 10 would be the same if q = x− y so in general we have
the following rule.

Uncertainty in Sums and Differences: If q is the sum or difference of several
quantities x, y, z...

q = x+ y − z · · ·

and if the uncertainties, δx, δy, δz..., are independent and random, then the uncertainty
in q is the quadrature sum,

δq =
√
δx2 + δy2 + δz+ · · · . (11)

There is a similar rule for products and quotients.

6



Uncertainty in Products and Quotients If several quantities w, x, y, z... are
measured with small independent and random uncertainties δw, δx, δy, δz... and

q =
w × x× · · ·
y × z × · · ·

then the fractional uncertainty in q is the quadrature sum of the factional uncertainties
in w, x, y, z...,

δq

|q|
=

√(
δw

w

)2

+

(
δx

x

)2

+

(
δy

y

)2

+

(
δz

z

)2

+ · · · . (12)

The area of the rectangle A = w` = 11712.12 cm2 and the fractional uncertainty in A is

δA

|A|
=

√(
δw

w

)2

+

(
δ`

`

)2

=

√(
0.2

76.4

)2

+

(
0.6

153.3

)2

= 0.0047,

so δA = 55 cm2. Using the rounding rules of Section 2 gives A = 11710± 55 cm2.
Sometimes the value we are interested in can’t be written as a simple sum, difference, product,

or quotient of the measured variables.

Uncertainty Propagation for Any Function Suppose that some physical quan-
tity q(x, y, z) is a function of three measured values x, y, and z. If δx, δy, and δz are the
uncertainties in these measured values then statistical theory tells us that the uncertainty
in q is

δq =

√(
∂q

∂x
δx

)2

+

(
∂q

∂y
δy

)2

+

(
∂q

∂z
δz

)2

. (13)

When q is a complicated function of many variables, Eq. 13 can be formidable, but keep in mind
that we only need to know δq to at most two significant figures. This means that if one of the terms
under the radical in Eq. 13 is significantly larger than the others we can ignore all but the largest
term.

5 Comparison of Two Values

Sometimes we wish to compare two measured values. This is often the case when we wish to compare
a experimentally determined value with a theoretical value which also has some uncertainty. In this
case, we have agreement if the ranges of the two measured values overlap. For example, suppose we
determine the spring constant of a spring by measuring its displacement from equilibrium when a
mass hangs from it and find k1 = 10±2 N/m. Then we determine the spring constant a second time
by measuring the period of the springs motion when a mass hangs from it and find k2 = 13±2 N/m.
In this case the range 8 to 12 N/m overlaps the range 11 to 14 N/m so the two values agree within
experimental uncertainty. When the ranges are nowhere near overlapping, the values do not agree.
If the two ranges are close but don’t overlap then one can’t make any definitive statement about
whether or not the two values agree. In this case, the result of the measurement is inconclusive.

One convenient, but crude way to compare two quantities p and q is to take the difference p− q.
In principle the difference should be consistent with zero. Using the error propitiation equation for
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differences Eq. 11 gives δ(p − q) =
√
δp2 + δq2. If the ratio of the absolute value of the difference

and the uncertainty is less than about 2 we have acceptable agreement—if it is much greater than
about 2.5 the two values do not agree. If the the value falls in the gray region between about 2 and
2.5, the experiment is inconclusive. Table 5 summarizes this crude rule-of-thumb for comparing two
values.

|p−q|√
δp2+δq2

. 2 acceptable agreement

2 . |p−q|√
δp2+δq2

. 2.5 inconclusive

|p−q|√
δp2+δq2

� 2.5 values don’t agree

Table 1: Rule-of-thumb for comparing two values. This technique of comparing two values is related
to Student’s t-test.

The discussion above illustrates the importance of estimating uncertainties. One cannot make
a comparison without an uncertainty estimate. The uncertainty in a measured quantity is just as
important as the value of the measured quantity. Experimental physicists often spend as much
or more time trying to estimate the uncertainty in a measured value as they do determining the
measured value itself.

6 Graphical Representation of Data

Remember the old adage, “A picture is worth a thousand words.” A graph is the best way to make
your data understandable when one observed quantity is depends on another. For example, suppose
you measure the distance a car has traveled as time goes on and get the values shown shown in
Table 2.

time (seconds) distance (meters)
0.24 5.76× 10−2

1.29 1.68× 100

2.35 5.55× 100

3.41 1.16× 101

4.47 2.00× 101

5.53 3.06× 101

6.59 4.34× 101

7.65 5.85× 101

Table 2: Data for distance versus time measurement.

It is very difficult to see how the distance is changing with time just by looking at the numbers
in the table. Figure 1 shows a graph of the data from Table 2. It’s easy to see from a quick look at
the graph that the car is accelerating. It’s very difficult to see this kind of trend in the data in a
table.

Take a close look at Figure 1. Notice that the figure has clearly labeled axes including units. You
don’t need to draw lines from data point to data points, in fact this is misleading in some cases. Try
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Figure 1: Graph of the data in Table 2.

to get into the habit of creating the plot as you take the data. Doing this allows you to recognize
immediately when a particular measurement needs to repeated or when another data point should
be taken to fill in a gap. Generating a final graph on a computer is okay, but it’s quicker and easier
to make a plot by hand on graph paper in the lab. Use a straight edge on graph paper and be careful
to plot each point as accurately as possible.

You can represent uncertainties in your data by putting error bars on your graphs. Table 3
contains data from a radioactive decay experiment where Ṅ is the decay rate as a function of time
t. There is an estimated uncertainty in the rate. Figure 2 shows a plot of these data with error bars
to represent the uncertainty in Ṅ .

t (seconds) Ṅ
0.00 16± 4
0.05 15± 3
0.10 10± 3
0.15 12± 3
0.20 9± 3
0.25 7± 2
0.30 3± 1
0.35 5± 2
0.40 4± 2
0.45 1± 1

Table 3: Rate of radioactive decay Ṅ as a function of time t.

The plot in Figure 2 is again computer generated. With a little practice, it’s often quicker and
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easier to do the plots in lab by hand. Microsoft Excel does an okay job of creating plots, but it’s
not really made for plotting scientific data. Ask your instructor if you’d like to learn about better
software for generating scientific graphs.

0.0 0.1 0.2 0.3 0.4 0.5
t (seconds)

0

5

10

15

20

N

Figure 2: Graph of the data in Table 3.

6.1 Linear Fitting

Suppose you have a set of N data pairs (xi, yi), that are supposed to be linearly related so that

y = A+Bx. (14)

The goal of a linear fit is to find the best fit parameters A and B. For a linear least squares fit, the
equations for A and B are derived by finding A and B that minimizes

χ2 =

N∑
i=1

(yi −A−Bxi)2

σ2
i

, (15)

where σi is the uncertainty in yi.
6 The value of χ2 can be used to judge the quality of the fit. A

fit is “good” if χ2 ≈ N − 2. If χ2 � N − 2 it indicates that the uncertainties (σi) have been
overestimated. If χ2 � N − 2 then either the uncertainties have been underestimated or y isn’t
really linearly related to x by Equ. 14.7

Given the equations for A and B, one can use standard error propagation to derive general
equations for their uncertainties. However, the values one accepts for these uncertainties depends
on the quality of the fit. In the following sections, I outline how to estimate the uncertainties in A
and B given something other than a perfect fit. The next section deals with the case in which σi

6We will assume the error in xi is negligible
7See Chapter 12 of An Introduction to Error Analysis by Taylor for an explanation.
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is the same for all the data. The final section generalizes the technique to a weighted fit where the
σi can be different. I state most of the results without proof. A more rigorous description can be
found in Bevington’s or Taylor’s books on error analysis.

6.1.1 Uncertainties for an Unweighted Fit

In this section we assume that the y-uncertainty is the same for all the data. If we call this uncertainty
σ, then

χ2 =
1

σ2

N∑
i=1

(yi −A−Bxi)2. (16)

The best estimates of A and B are those that minimize χ2. Taking the partial derivatives of χ2 with
respect to A and B and setting them equal to zero gives

A =
(
∑
x2
i )(
∑
yi)− (

∑
xi)(

∑
xiyi)

∆
, (17)

B =
N(
∑
xiyi)− (

∑
xi)(

∑
yi)

∆
, (18)

where
∆ = N(

∑
x2
i )− (

∑
xi)

2. (19)

We already know the uncertainty in the yi is σ, but can also use our fit to estimate what the
uncertainties should be by looking at how much our data points deviate from the fit. The standard
deviation from the fit gives us an estimated uncertainty

σest =

√√√√ 1

N − 2

N∑
i=1

(yi −A−Bxi)2. (20)

By comparing this result with the equations for χ2 (Equ. 16) it is relatively easy to show that

σ2
est =

χ2

N − 2
σ2. (21)

At this point it is convenient to define the reduced chi-squared,

χ̃2 ≡ χ2

N − 2
. (22)

Given this definition, σ2
est = χ̃2σ2. Note that if we have a “good” fit, χ̃2 = 1 and σest = σ as we

would expect. In fact, this is what we mean by a good fit. If χ̃2 � 1 then σest � σ and we have
overestimated the errors, σi. If χ̃2 � 1 then σest � σ and we have underestimated the error or the
relation between x and y isn’t really linear.

We can now use standard error propagation to find the uncertainties in A and B. It isn’t too
hard to show that

σA =

√∑
x2
i

∆
δy,

σB =

√
N

∆
δy,
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where δy is the y-uncertainty. We now have a choice: do we let δy be our original uncertainty
estimate, σ, or the uncertainty derived from the fit, σest. If χ̃2 = 1 the choice is moot since they are
equal. If the relation between x and y is truly linear, σest is a better estimate of the error that we
actually have. Therefore the best estimates for σA and σB are

σA = σest

√∑
x2
i

∆
= χ̃σ

√∑
x2
i

∆
, (23)

σB = σest

√
N

∆
= χ̃σ

√
N

∆
. (24)

However, be very cautious if you find σest � σ. Having a χ2 > N − 2 may mean the relation is not
linear.

6.1.2 Uncertainties in a Weighted Fit

If the y uncertainties are not all equal then we can’t factor them out of the sum in the expression
for χ2 as we did in Equ. 16. Instead we must use the more general expression for χ2 given in Equ.
15. When we take the partial derivatives of Equ. 15 and set them equal to zero to minimize χ2 we
get the following equations for A and B:

A =
(
∑
wix

2
i )(
∑
wiyi)− (

∑
wixi)(

∑
wixiyi)

∆
, (25)

B =
(
∑
wi)(

∑
wixiyi)− (

∑
wixi)(

∑
wiyi)

∆
, (26)

where
∆ = (

∑
wi)(

∑
wix

2
i )− (

∑
wixi)

2, (27)

and wi = 1/σ2
i . Applying error propagation to the equations for A and B allows use to compute the

uncertainties in A and B. We find that

σA =

√∑
wix2

i

∆
,

σB =

√∑
wi

∆
.

However, to derive these equations we have assumed that the σi are accurate estimates of the
uncertainty so that χ̃2 = 1. If this is not the case then the above equations will either underestimate
or overestimate the uncertainties in A and B. If we are confident that the the relation between x
and y is linear, then just as in the case in section 6.1.1, better estimates of the uncertainties are

σA = χ̃

√∑
wix2

i

∆
, (28)

σB = χ̃

√∑
wi

∆
. (29)

However, be cautious in using these equations. If χ̃2 � 1, it could mean that the relation between
x and y is not linear. It could also mean your uncertainty estimates aren’t reliable in which case it
may be better to use an unweighted fit. However, if you are confident that the relation between x
and y is linear, and that at least the relative size of the uncertainties are correct, then Equ. 28 and
Equ. 29 give you the best estimates of the uncertainties in A and B.
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