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Chapter 1

Astronomical Coordinates
and Time

Suppose one night you were looking through your backyard telescope and
you discovered what you think is a supernova. If you want to tell others
where to look to find this event, you will need to specify the position of
the object in the sky. This chapter introduces the standard astronomical
coordinates systems that astronomers use to specify the location of objects
on the celestial sphere. The celestial sphere is an imaginary sphere on
which the astronomical objects appear to be located. We can specify any
point on the sphere, by specifying two angles. Only two angles are needed,
but there are a variety of different and surprisingly subtle ways to define
those angles.

In order to specify any coordinate system we need to choose an origin
for the coordinates. In astronomy this is usually taken to be at the center
of the Earth or the Sun. We also need to specify the reference directions
from which to define the coordinates. For example, to define a conventional
Cartesian coordinate system we need to specify the directions of the x, y,
and z axes. Astronomical coordinate systems use two angles of a spherical
coordinate system. Spherical coordinates are specified by defining a funda-
mental plane, a fundamental direction, and the directions of increasing
angle. The fundamental plane is a plane which divides the sphere into two
hemispheres. The fundamental direction specifies the direction of one of
the axes. The traditional definition of spherical polar coordinates defines
the x-y plane as the fundamental plane. Points on the surface of a sphere
centered on the origin specified by the angles θ and φ, where θ is the angle
from the +z-axis and φ is the angle in the x-y plane shown in Figure 1.1.

1
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The angle φ increases from the +x-axis toward the +y-axis.

Figure 1.1: Two angles θ and φ specify the location of any point on the
sphere. This is a conventional right-handed coordinate system, with φ in-
creasing from the +x-axis toward the +y-axis.

1.1 Horizon Coordinates

The horizon or altitude-azimith coordinate system is the simplest way
for describing the position of a celestial object from the surface of the Earth.
The origin of horizon coordinates is taken to be the observer. The funda-
mental plane is a plane tangent to the surface of the Earth at the location
of the observer so that the z-axis of a conventional Cartesian coordinate
system would point toward the zenith. The zenith is defined to be the
point on the celestial sphere directly over the observer. The point directly
under the observer is called the nadir. The fundamental direction for hori-
zon coordinates is due north. The x-axis of a Cartisian coordinates would
point in this direction. The position of a star is determined by specifying
the altitude angle h from the horizon to the star, and an azimuth angle
A measured along the horizon from north or the x-axis (Figure 1.2). Notice
that for conventional horizon coordinates A increases from north to east,
which makes this a left-handed coordinate system. The zenith distance z
is the angle between the z-axis and the star so that z = h− 90◦. The local
meridian is the arc on the celestial sphere from the point on the horizon
that is due south, through the zenith to the point on the horizon that is due
north.
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Figure 1.2: The horizon coordinate system.

Horizon coordinates are useful because they are simple, but there are
some disadvantages. One is that the origin of the coordinates depends on
the location of the observer. This isn’t a serious problem for most celestial
objects. The stars are so far away that shifting the origin to the center of
the Earth wouldn’t change the star’s altitude and azimuth. A more serious
disadvantage is that the directions of the axes depend on the observers
location. The azimuthal coordinate depends on the observer’s longitude
and the zenith distance depends on the observer’s latitude (see Problem 1.8).
However, the biggest disadvantage is that celestial objects don’t have fixed
coordinates. This is due to the Earth’s rotation and orbital motion around
the sun.

1.1.1 Diurnal and Annual Motions

As the Earth rotates all the celestial objects rise, transit1, and set. Their
altitude and azimuth are constantly changing. In fact, the conventional
length of the day is derived from the motion of the Sun around the celestial
sphere. Suppose we set out to measure the length of the day by the time
between successive transits of the Sun. If we did such an experiment we
would find that it takes on average 24 hours2. We call this 24 hour period
a solar day. If we did the same experiment for some star rather than the
Sun we would find that the time between transits is only about 23 hours
and 56 minutes. This is because as the Earth travels in it’s orbit around

1A transit occurs when a celestial body crosses the meridian because of the Earth’s
rotation.

2Some days would actually be a little shorter than 24 hours and some would be longer.
The difference is do to the fact that the Earth’s orbit is slightly elliptical. See Section 1.5
for a more complete discussion.
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the Sun the position of the Sun shifts with respect to the background stars.
The time between the stars’ successive transits of the meridian is called a
sidereal day.

Problem 1.1
Given that the length of the year is 365.242 solar days, show that the
length of the sidereal day is approximately four minutes shorter than
the solar day.

The apparent path of the Sun along the celestial sphere is called the
ecliptic. As the year progresses the Sun passes through the zodiacal con-
stellations. The zodiacal constellations are the twelve constellations along
the ecliptic. The planets’ and the Moon’s paths along the celestial sphere
are very close to the ecliptic.

1.2 Equatorial Coordinates

Given the fact that the horizon coordinates depend on the position of the ob-
server and that are constantly changing for all celestial objects, they aren’t
very useful. A better system would we one that is independent of the celestial
motion or the observers location on Earth. There are a few different choices
that astronomers use depending on which is most convenient. Galactic co-
ordinates are used when the location of objects with respect to the plane of
the galaxy are important. Ecliptic coordinates are useful for solar system
studies, but the most commonly used system is the equatorial coordinate
system.

In order to define the two equatorial coordinates consider the location
of the star on the celestial sphere in Figure 1.3. The origin of equatorial
coordinates is the center of the Earth. The fundamental plane is coincident
with Earth’s equator. That means the z-axis of a conventional Cartesian
coordinate system would be coincident with the Earth’s polar axis (see Fig-
ure 1.3). The intersection of the Earth’s equatorial plane and the celestial
sphere defines the celestial equator. The intersections of the positive and
negative z-axis with the celestial sphere are called the north and south
celestial poles. The intersection of the fundamental plane with the celes-
tial sphere is called the celestial equator. The two angles that specify the
location of a point on the celestial sphere are called the right ascension, α,
and the declination δ. The declination is the polar angle and is the mea-
sured from the celestial equator so δ = 90◦ − θ. The right ascension is the
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Figure 1.3: The equatorial coordinate system. The z-axis intersects the
celestial sphere at the north and south celestial poles, NCP and SCP re-
spectively. The x-y plane intersects the celestial sphere at the celestial
equator.The x-axes points toward the first point of Aries (Υ). (Figure from
Carroll and Ostlie [5].)

angle from the fundamental direction in the fundamental plane as is shown
in Figure 1.3. The earth rotates 360◦ in right ascension in approximately 24
hours. This makes it convenient to specify right ascension in hours, minutes
and seconds of time. One hour being 15◦, 1 minute is 15 arcminutes and
1 second is 15 arcseconds. By convention the right ascension is a positive
angle between 0 and 24 hours.

The fundamental direction—the direction of the positive x-axis—points
toward a fixed point on the celestial sphere called the First Point of Aries
and usually given the symbol Υ. The First Point of Aries is located at one
of the intersections of the ecliptic and the celestial equator. The ecliptic
is titled with respect to the celestial equator because the Earth’s axis is
tilted with respect to the Earth’s orbital plane. The time at which the Sun
crosses the celestial equator is called an equinox. This happens twice a
year—once on about September 22nd and once on about March 20th. The
position of the Sun at the September Equinox defines the First Point of
Aries. The northern-most excursion of the Sun occurs around Jun 21st.
This time is called the June Solstice. The southern-most excursion is
called the December Solstice.3 Figure 1.4 shows the location of the Sun

3The classical names for these events are the autumnal equinox, the winter solstice,
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Figure 1.4: The celestial sphere showing the celestial equator and the eclip-
tic. The locations of the Sun during the solstices and equinoxes are shown.

on the celestial sphere at the times of the equinoxes and solstices.

Problem 1.2
Figure 1.4 is a geocentric view of the path of the Sun around the Earth.
Draw an equivalent heliocentric diagram showing the path of the Earth
around the Sun. Be sure to show the Earth and the direction of the
Earths axis at the time of the equinoxes and solstices.

1.2.1 Angular Separation in Equatorial Coordinates

You will often find it useful to be able to calculate the angular separation
between two points on the celestial sphere from their equatorial coordinates.
Figure 1.5 shows two points A and B on the celestial sphere. The angular
separation between the two points is β. The coordinates equatorial coordi-
nates of point A are αA and δA. The coordinates of point B are αB and δB.
The points A, B, and the NCP defines a spherical triangle on the celestial
sphere. Applying the law of cosines for a spherical triangle [equation (A.1)]

vernal equinox, and summer solstice, but I prefer terms that avoid the northern hemisphere
bias.
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1. Draw the great circle connecting the two points, and the hour circle of each point. The 

result is a spherical triangle whose vertices are the celestial pole and the two points: 

triangle NAB in the diagram. The sides of this triangle are, respectively, the angle of 

intertest φ, and the complements of the declinations of the objects, (90°- δ1) and (90° - 

δ2). The angle opposite side φ is Δα. Apply the law of cosines and simplify: 

 

 
 

 
 

2. Apply the result of the previous problem, letting: 

= latitude of NYC 

= latitude of Mexico, or LA 

 = longitude difference, NYC and other, so for example:  
 

cos φNY-LA = sin 41 ° sin 34°  + cos 41 ° cos 34 ° cos(118° – 74°) = 0.818 

 

The NY-LA distance (35.2°) is longer than the NY-Mexico City distance (30.6°). 

 

3. The distance the Earth travels in a sidereal year (the orbit circumference) is 2π au. But 

the amplitude of the radial velocity variation is the orbital velocity of the Earth. If a is 

the length of the au in kilometers, then its estimated value is  

a =
1

2π
(29.167 ± .057 km/s)(31557940 s)=(1.488 ± .003) ×10

8
km  

 

4. Again, from the spherical triangle with points A, B and the north celestial pole (N). 

Then apply the law of sines, noting that r, Δδ, and Δ α  are all small: 

 

Figure 1.5: Two points, A and B, on the celestial sphere separated by the
angle β.

from Appendix A to this triangle gives

cosβ = cos(90◦−δA) cos(90◦−δB)+sin(90◦−δA) sin(90◦−δB) cos(αB−αA),

or
cosβ = sin δA sin δB + cos δA cos δB cos ∆α, (1.1)

where ∆α ≡ αB − αA. For sufficiently small angles ∆δ = δB − δA and ∆α
the angle β is

β2 = ∆δ2 +
(
cos2 δ̄

)
∆α2, (1.2)

where δ̄ = δA+δB
2 .

Problem 1.3
Starting with equation (1.1) prove equation (1.2) for small angles ∆δ
and ∆α.

1.2.2 Relating Equatorial to Horizon Coordinates

Figure 1.6 shows the celestial sphere with the reference points for both hori-
zon and equatorial coordinates. The actual horizon with the cardinal points
(North, South, East, and West) are shown in the horizontal plane. The
zenith is the point directly above the observer. The celestial equator lies
in a plane tiled with respect to the horizon. The angle along the meridian
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Figure 1.6: Diagram of the celestial sphere showing the meridian plane
and the object plane. The meridian plane is the plane containing the north
celestial pole, NCP, the south celestial pole, SCP and the zenith. The object
plane contains the object and the north and south celestial poles. The angle,
on the celestial plane, between the meridian plane and the object plane is
the hour angle.

between the horizon plane and the celestial equator is equal to 90◦ minus the
latitude of the observer. The latitude is also the angle between the NCP and
the zenith. The figure also shows the intersection of two planes. One plane
contains the north celestial pole, the zenith and the south celestial pole. The
intersection of this plane with the celestial sphere is the meridian. Another
plane is defined by the north celestial pole, a star (not on the meridian) and
the south celestial pole. The hour angle, HA, is the angle, measured along
the celestial equatorial, between the plane containing the meridian and the
plane containing the star. From Figure 1.6 it is easy to see that

HA = αM − α, (1.3)

where αM is the right ascension of the meridian. The right ascension of the
meridian is equal to the local sidereal time or LST . Sidereal time is a
time system based on the length of the sidereal day, but it is best to think
of the LST as simply the right ascension of the meridian.

Like the right ascension, the hour angle is typically stated in hours,
minutes and seconds. Unlike the convention for right ascension, hour angle
ranges from −12 hours to +12 hours. All points on the celestial sphere east
of the meridian have negative HA while those in the west have positive HA.

In order to point the telescope at an object, one needs to know its equato-
rial coordinates and αM . Fortunately, most research telescopes are computer
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controlled so the computer automatically calculates LST for you. However,
it is still useful to know how to approximate αM so that one can determine
what right ascensions are visible at a particular time on a given night.

It is easy to derive an approximation for αM from the definition of the
first point of Aries and the September equinox . By definition, the Sun has
a right ascension of zero at the time of the March equinox. Since the Sun
transits the meridian at about noon local time, αM ≈ 0 hr at noon local
time on the first day of spring. One hour later, αM ≈ 1 hr etc. At midnight
αM ≈ 12hrs so the right ascensions visible at midnight on the night of the
March equinox ranges from α ≈ 6 hrs to 18 hrs. Note that this is actually
only true for objects on the celestial equator. In the northern hemisphere
a larger range of right ascensions is visible for objects north of the celestial
equator and a smaller range for those to the south.

Six months later, on the day of the September equinox, the Sun crosses
the celestial equator and has a right ascension , α ≈ 12 hrs so αM ≈ 12 hrs
at noon. This implies that at midnight local time on about September 22nd
αM ≈ 0 hrs. It takes one year or approximately 365 days for the sun to
return to this position so αM at midnight can be computed on any night of
the year by multiplying the fraction of the year since the September equinox
by 24 hrs.

αM (at midnight) ≈ n

365
24 hrs, (1.4)

where n is the number of days since the September 22nd. This is only an
approximation! To calculate the exact value we need to know the exact time
the Sun crosses the celestial equator and the longitude of our telescope.
However, the above equation is good to a few percent and is sufficiently
accurate for planning most observations.

Once we have computed αM at midnight it is easy to determining αM
for any time during the night. For example if αM = 13 hrs at midnight then
at 9:00 PM, αM ≈ 13hrs− 3hrs = 10 hrs.

Problem 1.4
Suppose we wish to use the Keck Telescope on Manau Kea to observe the
galaxy M51. The coordinates of M51 are α ≈ 13h30m and δ ≈ 47◦13′.
When is the best time to observe? That is, on about what night of the
year will M51 transit at midnight?
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Transformations for Equatorial and Horizon Coordinates

Suppose we knew the equatorial coordinates of some celestial object and we
wanted to know the horizon coordinates. We would need to not only know
α and delta, but also the local sidereal time, αM and latitude, φ, of the
observatory. Given all this information we can use the law of cosines and
law of sines for spherical triangles to determine the altitude, h, and azimuth,
A.

sinh = sin δ sinφ+ cos δ cos(HA) cosφ (1.5)

cosh sinA = cos δ sin(HA), (1.6)

where HA = αM − α.

Problem 1.5
What is the azimuth of the Sun at sunset on the December solstice as
viewed from Kitt Peak National Observatory (latitude 31.9583◦ N, and
longitude 111.5967◦ W)?

Notice that these transformations imply the h > 0 for δ > φ for all
HA. That means that these objects never set. An object with a declination
such that its altitude is never negative for a given latitude is said to be
circumpolar and will be visible anytime during the year. Objects with δ <
−φ have h < 0 for all HA. These objects never rise and are hence are never
visible from that latitude. Figure 1.7 shows the locations of circumpolar
objects and objects that never rise on the celestial sphere.

1.2.3 Precession and Nutation

The fundamental plane and the fundamental direction for equatorial co-
ordinates are tied to the axis of rotation of the Earth. If there were no
torques on the Earth, its angular momentum would be conserved and the
axis of rotation would be fixed. However, the gravitational forces of the
Moon, Sun, and planets on the equatorial bulge of the Earth produces a
torque that changes the direction of its axis of rotation. The change in the
axis of rotation is broken down into two components called precession and
nutation. Precession is a slow movement of the Earth’s axis of rotation
around an axis perpendicular to the ecliptic which is fixed with respect to
the stars (see Figure 1.8). It takes approximately 26,000 years for the axis
of rotation to make one complete cycle around the ecliptic pole. The angle
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Figure 1.7: Celestial sphere showing the locations of objects that are cir-
cumpolar and those that are never visible.

Figure 1.8: Precession of the equatorial coordinate system. The ecliptic
poles remains fixed with respect to the stars, but the north and south celes-
tial poles as well as the position of the First Point of Aires changes as the
Earth’s axis precesses.
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between the ecliptic pole and the celestial pole is called the obliquity and
is approximately 23.4◦ for the Earth. As a consequence of this motion, the
first point of Aries also precesses with a period of 26,000 years. Both the
fundamental plane and the fundamental direction are changing slowly with
time. Currently the north celestial pole is close The bright star Polaris, but
in about 14,000 years the star Vega will be near the NCP making Vega the
pole star. Currently the First Point of Aires is in the constellation Pisces,
but in 1000 BCE it was in Aires.

Problem 1.6
Estimate how much and it what direction the First Point of Aires pre-
cesses each year.

The Earth’s nutation is a relatively short term small oscillation around
the precessional path of the celestial pole (see Figure 1.9). The nutation

Figure 1.9: Nutation is a relatively small wobble in the celestial pole as it
precesses around the ecliptic pole. This produces small oscillations in the
obliquity over time. The mean obliquity is approximately 23.4◦.

occurs because the torques exerted by the Sun, Moon, and planets isn’t
constant in time. The nutation is effected not just by the gravitational
forces, but also by changes in the moment of inertial of the Earth. This
makes the detailed calculations of the nutation difficult, but fortunately
these effects are small compared to the effects of precession.
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The effects of precession and nutation causes the equatorial coordinates
of celestial objects to change over time. This means that it isn’t enough
to just specify the coordinates, we must also specify the date or epoch for
the coordinates. All catalogs that specify the coordinates of astronomical
objects also specify an epoch. One of the most common epochs used today is
the so called J2000 epoch. J2000 refers to 12h GMT on January 1st, 2000.4

Given the complicated motion of the celestial pole with respect to the
stars, calculating the exact coordinates of an object for today when given
the position at a different epoch is a difficult task. However, most of the
change in coordinates is due to precession and a good approximation is given
by the equations

α = α0 + (m+ n sinα0 tan δ0)N (1.7)

δ = δ0 +
(
n′ cosα0

)
N, (1.8)

where α and δ current-day coordinates. The constants m, n, and n′ are
given in Table 1.1. The coordinates α0 and δ0 are the coordinates at the
epoch listed in Table 1.1 and N is the number of years since the reference
epoch.

Table 1.1: Precessional constants from Duffett-Smith and Zwart [8].

m n n′

Epoch (seconds) (seconds) (arcsec)

1900.0 3.07234 1.33645 20.0468
1950.0 3.07327 1.33617 20.0426
2000.0 3.07420 1.33589 20.0383
2050.0 3.07513 1.33560 20.0340

Problem 1.7
The star Sirius has coordinates α(J2000) = 6h45m8.9s and δ(J2000) =
−16◦42′58′′. What are the coordinates on June 5, 2013?

4GMT stands for Greenwich Mean Time and the “J” in J2000 refers to the Julian date.
See Section 1.5 on Time for a more complete description.
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1.3 Telescope Mounts

The functions of a telescope mount are to hold the optical elements (lenses
and mirrors) in place and to point and track an object of interest. For
large telescopes holding the optics in position requires some very sophisti-
cated engineering. For example, the Keck ten-meter telescope has a primary
mirror made-up of 36 individual hexagonal segments. The positions of all
36 sections are actively monitored and adjusted in real time. Fortunately,
as an astronomer you can remain blissfully ignorant of all this engineering.
However, you do need to be aware of the advantages and disadvantages the
two most common types of telescope mounts. These two types of mounts
are closely tied to the two coordinate systems we’ve discussed so far.

1.3.1 Altitude-Azimuth Mount

The simplest telescope mount is an altitude-azimuth or alt-az mount (see
Figure 1.10). This type mount is naturally related to the horizon coordi-
nates. The telescope rotates around a vertical axis to set the azimuth and
around a horizontal axis to set the altitude. The main advantage of this
system is its simple structural design. It’s also more compact than an equa-
torial mounted telescope, discussed below, and this means it is cheaper to
build. The disadvantages are that it must be driven at a non-uniform rate
around both axes to track an astronomical object across the sky and the
field of view rotates as the telescope tracks. Never-the-less its simplicity
and, hence its low cost, make it an attractive design for large telescopes.
Most large radio telescopes as well as the Keck ten-meter telescope use this
design.

1.3.2 Equatorial Mount

The equatorial mount is the most common design for optical telescopes. In
this design one of the two axes, the polar axis, is aligned parallel to the
Earth’s rotational axis, and the other, the declination axis, is perpendicular
to the polar axis (see Figure 1.11). This design overcomes the major dis-
advantages of the alt-az design. In order to track an object, the telescope
rotates about the polar axis at a constant rate equal to the Earth’s rotation
rate, but in the opposite direction. Of course this also means that the field
of view of an equatorial mounted telescope doesn’t rotate. A final advantage
is that the angular measures about the two axes give the hour angle and
declination directly.
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Figure 1.10: A side view and top view of an alt-az telescope mount.
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Figure 1.11: Side view and view along the polar axis of an equatorial
mounted telescope. The two angles that specify where the telescope is point-
ing are just the hour angle and declination of equatorial coordinates.
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Figure 1.12: The galactic coordinate system. Galactic coordinates have their
origin at the Sun. The galactic latitude, b, is measured from the galactic
plane and the galactic longitude ` is angle in the galactic plane measured
from the galactic center.

1.4 Other Coordinate Systems

1.4.1 Galactic Coordinates

When studying the galaxy it makes sense to specify the positions of objects
with respect to the center and the plane of the galaxy. The origin of galactic
coordinates is the Sun. The fundamental plane coincides with the galactic
plane and the fundamental direction points toward the center of the galaxy
in the constellation Sagittarius. The galactic latitude, b, is the angle for the
object above the galactic plane. The galactic longitude, `, is the angle in
the galactic plane from the center of the galaxy. By convention, both angles
are measured in decimal degrees with −90◦ ≤ b ≤ 90◦ and 0◦ ≤ ` ≤ 360◦.
Figure 1.12 shows an “image” of the Milky Way galaxy and shows how
galactic coordinates of a star are defined.

The transformation from equatorial to galactic coordinates for J2000 is
[7]

sin b = sin δ cos 62.87◦ − cos δ sin(α− 282.86◦) sin 62.87◦ (1.9)

cos b cos(`− 32.93◦) = cos δ cos(α− 282.86◦). (1.10)
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1.4.2 Ecliptic Coordinates

It is convenient to use ecliptic when specifying the positions of solar sys-
tem objects—planets, minor planets, comets, etc. Ecliptic coordinates have
the Earth as the origin, but the fundamental plane is coincident with the
ecliptic plane. Like equatorial coordinates the fundamental direction is to-
ward the First Point in Aries. The ecliptic latitude, β, is the angle from
the fundamental to the object. The ecliptic longitude, λ, is the angle in
the ecliptic plane from the First point of Aires. It is a right-handed co-
ordinate system and by convention, both angles are measured in decimal
degrees with −90◦ < β < 90◦ and 0◦ < λ < 360◦. Ecliptic coordinates by
are related to equatorial coordinates by a simple rotation around the fun-
damental direction by an angle equal to the obliquity, ε (see Figure 1.13).
The transformation from equatorial to ecliptic coordinates is

tanλ = (sinα cos ε+ tan δ sin ε)/ cosα (1.11)

sinβ = sin δ cos ε− cos δ sin ε sinα. (1.12)

Figure 1.13: Ecliptic coordinates are like equatorial coordinates rotated by
an angle equal to the obliquity around the axis pointing toward the First
Point of Aires.
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1.5 Time in Astronomy

All of our measures of time were originally derived from intervals between
celestial events. The length of the day was taken as the time between two
successive transits of the Sun. The day is subdivided into 24 hours, each hour
is divided into 60 minutes and each minute into 60 seconds. A second could
then be defined as 1/86,400 of a solar day. The problem with this definition
is that not all solar days are the same length. This is due primarily to the
ellipticity of the Earths orbit. The problem is avoided by defining the mean
solar day as the average length of the solar day over an entire year. Even
this doesn’t completely solve the problem because the Earths rate of rotation
varies slightly and is slowing overall. Today, the International System of
Units (abbreviated SI from the French Le Système international d’unités)
defines the SI second to be the length of time equal to 9,192,631,770 periods
of the radiation originating from the transition between two hyperfine energy
levels of the cesium-133 atom. This definition was chosen so that it equals
1/86,400 of the mean solar day in 1900.

The SI second is the basic unit of International Atomic Time TAI is
from the French name Temps atomique international. Having a time system
that is based on atomic clocks means the system is accurate to less than a
fraction of a second over a million years. The problem with this system is
that it gets out of sync with astronomical time because of variations in the
Earth’s rotation rate. TAI is currently about 35 seconds out of synch with
the position of the Sun. Coordinated Universal Time or UTC is a time
standard that is based on SI seconds, but is kept in synch with the Sun by
occasional additions of a leap second.

1.5.1 Solar Time

There are two reasons the Sun is a poor time keeper. One is that the Earth’s
orbit is slightly elliptical—it moves faster at perihelion in January and more
slowly at aphelion in June. The second effect is due to the tilt of the earth’s
axis with respect to its orbital plane. From the earth’s point of view this
means that the ecliptic is tilted with respect to the equatorial plane. The
Sun’s apparent diurnal motion depends on the position of the Sun on the
ecliptic projected onto the celestial equator. The net effect is for the solar
day to be slightly longer than 24 hours in May and November and slightly
shorter than 24 SI hours in February and July. The apparent solar time
or true solar time is based on the actual position of the Sun on the sky.
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It is equal to the HA of the Sun plus 12 hours or

TAS = HA� + 12 hr,

where TAS is the apparent solar time and HA� is the hour angle of the Sun.
At noon local time the apparent solar time should be very close to 12 hr.

The mean solar time is defined by the position of a fictitious Sun that
moves across the sky at a rate equal to the mean rate of the real Sun. At
noon mean solar time, the fictitious mean Sun transits the meridian. The
solar day is defined as the time interval between two successive transits of
the fictitious mean sun and is very close to 24 SI hours long. The equation
of time EOT is the difference between the mean solar time and the apparent
solar time

EOT = TMS − TAS,

where TMS is the mean solar time. You can see in Figure 1.14 that the
apparent Sun can be as much as 15 minutes ahead of or behind the fictitious
mean Sun. The time origin for UTC is chosen to match the mean solar

Figure 1.14: Equation of time showing by how much the actual position of
the Sun differs from the mean Sun.

time at 0◦ longitude or the Royal Observatory in Greenwich England. When
UTC becomes a second out of synch with the mean solar time at Greenwich,
which is called UT15, a leap second is added to UTC so it always agrees
with UT1 to within 0.9 seconds.

5UT1 is the successor to Greenwich Mean Time (GMT). When the small distinction
between UTC and UT1 isn’t important, they are both often referred to as Universal Time
or UT.
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Our system of standard time zones are referenced to UTC. Each zone
consists of a band about 15◦ of longitude wide. Figure 1.15 shows the
regions for each of the standard zones. Some parts of the world also institute
daylight savings time. During daylight savings time the offset between UTC
and the time in the zone is one hour less. For example, Mountain Standard
Time (MST) is 7 hr behind UTC, but Mountain Daylight Time (MDT) is 6
hr behind so at 22:30 UTC it is 15:30 MST, but 16:30 MDT.

Figure 1.15: Standard time zones of the world.

1.5.2 Julian Date

In 1054 Chinese astronomers reported the discovery of a “guest star” in the
constellation Taurus. Today with modern telescopes we see a supernova
remnant in exactly the same location. We know it as the Crab Nebula.
Apparently the guest star was the original supernova. Suppose as an as-
tronomer you wished to accurately determine the interval of time between
the supernova event and today. If you were given the calendar dates you
would have to first count the number of years between the events and multi-
ply by 365, then add the appropriate number of leap days, count the number
of days in the any additional months and finally count any additional hours.
As you can imagine this is a very tedious process. Such calculations arise
frequently in astronomy. In 1582, the system of Julian Day Numbers
was introduced to avoid this sort of calculation. In this system, the time of
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an astronomical event is specified as the decimal number of days since noon
UTC on January 1, 4713 BC. This is called the Julian Day or JD of the
event. Julian Day numbers for each day of the year at 0 UT are tabulated
in the Astronomical Almanac [15]6. For example, the Julian date for 0 UT
August 15, 1997 is 2,450,675.5.

The Julian Day System was introduced by Joseph Justus Scaliger. There
is no direct connection between the Julian Day System and the Julian Cal-
endar used by the Romans. The starting date of January 1, 4713 BC also
has no astronomical or historical significance. It was chosen by Scaliger to
simplify the calculation of JD for some historic astronomical events.

A more convenient, but related, system is the Modified Julian Day
system. The modified Julian date (MJD) is the JD minus 2,400,000.5. At
0 UT on January 1, 1997 the MJD was 50,448.0.

It is common for astronomers to use the Julian date to specify the epoch
for the equatorial coordinates of a celestial object. For example, the Julian
epoch 2000.0 is denoted J2000.0 and refers to January 1.5, 2000. The Julian
date for January 1.5, 2000 is JD 2,451,545.0 or is the MJD 51,544.5.

1.5.3 Sidereal Time

The apparent solar time is based on the actual position of the Sun. A
solar day is the length of time between successive transits of the Sun. A
sidereal day is the time between successive transits of the First Point of
Aries. Sidereal time is based on the diurnal motion of the celestial sphere
rather than the Sun.

The length of the mean solar day is 24 hours. This is not however the
period of rotation of the Earth with respect to the celestial sphere. Because
the earth is orbiting the Sun, the apparent position of the Sun on the celestial
sphere changes from day to day. The rotation period of the Earth is defined
by the time it takes a fixed point on the celestial sphere to make one cycle
around the Earth. The period of the Earth’s rotation is therefore one sidereal
day.

A sidereal day is approximately four minutes shorter than the mean solar
day. It is easy to derive this time difference. Figure 1.16 shows how the
Earth has moved along its orbital path during one period of Earth rotation.
The Earth must rotate slightly more than 360◦ before the Sun transits the

6The Astronomical Almanac is published annually by the United States Naval Obser-
vatory and Her Majesty’s Nautical Almanac Office. It contains ephemera for solar system
objects, catalogs of celestial objects as well as information about timekeeping and a list of
the world’s major observatories. There is an online version at http://asa.usno.navy.mil.
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Figure 1.16: Sidereal and solar days. As the Earth rotates once with respect
to the fixed stars, it also moves through a certain distance in its orbit. To
complete a mean solar day, it must rotate approximately 1◦ more to bring
the Sun back to the meridian.

local meridian. Since the Sun makes one complete cycle of 360◦ around the
celestial sphere in one year it must move 360◦/365 days ≈ 1◦ per day with
respect to the celestial sphere. The length of the solar day, 24 hours, is
actually the amount of time it takes the Earth to rotate 361◦ so that the
Sun is on the local meridian. The time, ∆T , needed for the Earth to rotate
that extra degree is

∆T =

(
24 hrs

361

)
≈ 0.066 hrs ≈ 4 minutes.

A more detailed calculation of the length of the sidereal day gives 23h 56m
04s or 23.9345 hours. The exact ratio of the solar day to the sidereal day is
1.00273790931.

The local sidereal time, LST , is defined to be the hour angle of the
First Point of Aires. The First Point of Aires defines the fundamental di-
rection so the right ascension of the First Point of Aires is zero, αΥ = 0.
Substituting αΥ = 0 into the definition of HA [equation (1.3)] gives

LST = αM . (1.13)

The right ascension of the meridian is equal to the local sidereal time. Cal-
culating the LST accurately requires some care, but it is easy to compute
an approximate value as was done in Section 1.2.2.
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Supplementary Problems

Problem 1.8 Suppose an star is seen at the zenith as viewed from Green-
wich England.
(a) What is the altitude and azimuth of the star viewed by an observer on
the Earth’s equator directly south of Greenwich?
(b) What is the altitude and azimuth of the star as viewed by an observer
directly East of Greenwich at a longitude of 20◦ E?
(c) What is the altitude and azimuth of the star as viewed by an observer
in Madrid at 40.4000◦ N, and 3.6833◦ W.

Problem 1.9 Estimate the LST on January 31, 1954 at 10:00 PM.

Problem 1.10 Compute as accurately as possible the azimuth of the Sun
at sunset on the day of the December solstice
(a) at Greenwich England.
(b) at Colorado Springs, Colorado.



Chapter 2

Telescopes

The essence of observational astronomy is the measurement of electromag-
netic radiation—light. To learn about the universe astronomers use the
whole electromagnetic spectrum from long-wavelength radio waves to high-
energy γ-rays. We can only measure a few things about electromagnetic
radiation. We can measure the intensity. Astronomers call this photome-
try. Under the heading of photometry we might also include imaging since
this is just measuring intensity of the radiation from different parts of the
object. We can take a spectrum of the object (spectroscopy). Finally, we
can measure the polarization of the radiation (polarimetry).

Each of these techniques is used to learn different things about the ob-
ject of interest. For example, we can use photometry to learn about the
energy output of star and obtain a spectrum to determine it’s temperature.
Polarimetry can sometimes be used to determine the emission mechanism
since some mechanisms, synchrotron emission for example, produce polar-
ized light.

All of these measurement techniques require a telescope to gather light
and focus it on a detector. In this text we will primarily discuss optical
telescopes. However, most of the design principles apply to all kinds of
telescopes from the largest radio telescopes to space based x-ray telescopes.

2.1 Geometric Optics

Light is an electromagnetic wave with wavelengths in the range from about
350 to 750 nm. Geometric optics treats light as consisting of narrow beams
or rays. The rays are perpendicular to the light’s wavefronts. Geometric
optics ignores many of the wave and particle properties of light, but works

25
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Table 2.1: Indices of refraction. Fused silica and florite are both used in
high quality optics. Data from Allen [7].

Material n (500 nm) n (700 nm)

Air (STP) 1.000294 1.000290
Water 1.336 1.330
Fused silica 1.463 1.455
Florite (CaF2) 1.437 1.432

well to describe how lenses and mirrors affect light.
We can determine the paths of light rays by using Fermat’s Principle.

It states that the path that light takes through any medium from one point
to another is the one that minimizes the travel time between the two points.
The time interval depends on the speed of light. Light travels at speed c
in a vacuum, but at a speed less than c in any transparent material. The
refractive index, n is the ratio of the speed of light in a material to the
speed of light in a vacuum

n =
v

c
, (2.1)

where v is the speed of light in the material and may depend on wavelength.
Table lists the refractive indices of a few materials.

The travel time, ∆t, between two points P1 and P2 is given by the path
integral

∆t =

∫
C

ds

v
=

1

c

∫
C
n ds (2.2)

where the path C intersects points P1 and P2. If we define the optical path
length as

S = c ∆t =

∫
C
n ds. (2.3)

Minimizing the travel time is equivalent to minimizing the optical path
length.

The mathematical problem is to find the curve C that minimizes the
integral in equation (2.3). Calculus of variations is the branch of mathe-
matics that studies how to solve such problems in general, but it’s easy to
see the solution for the simple case where the index of refraction is uniform
throughout the medium. In this case the integral for S is just n times the
path length and we know the shortest path between two points is a straight
line.
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Figure 2.1: Reflection and refraction at the interface between two materials
of differing indices of refraction. The index of refraction n1 < n2 so the ray
is bent toward the normal as it passed into the higher index of refraction
material.

Using Fermat’s Principle seems like a lot of work to get something we
already knew—that light rays travel in straight lines in a uniform medium—
but it is very powerful and can tell us how light travels in any medium.
In particular you can use it to determine what happens to light when it
is incident on the interface between two materials of different indices of
refraction. Figure 2.1 shows light rays from point P1 striking the surface
between the two materials at point O. The angle that the light makes with
respect to the normal to the surface is called the angle of incidence and
is labeled θI . Some of the light is reflected from the surface. The law of
reflection is easy to derive from Fermat’s Principle (Problem 2.12) and
states that

θI = θR (2.4)

where θR is the angle the reflected light makes with respect to the normal.
Some of the light will travel into the material with index of refraction n2.

Fermat’s Principle requires that the light ray change direction or refract
when it passes into the second material. If n2 > n1, then the ray will be
bent toward the normal to the surface so that

n1 sin θI = n2 sin θ2 (2.5)

where θ2 is the angle from the normal (Problem 2.13).
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Problem 2.1
When light travels from a medium of higher index of refraction to a
medium with a lower index of refraction, the incident ray will be re-
fracted away from the normal (see Figure 2.2). If the angle of incidence
is increased enough the angle of refraction becomes 90◦. Show that this
happens at the critical angle

θc = sin−1

(
n2

n1

)
. (2.6)

What actually happens in cases where θI ≥ θc is that all of the light is
reflected. This is called total internal reflection.

Figure 2.2: The incident ray is traveling from a medium 1 into medium 2
with n1 > n2. For incident angles greater than the critical angle, θI ≥ θc,
all of the light is reflected back into medium 1.

All astronomical optics use refraction, reflection, or a combination of the
two. In the next few pages we will explore some of these applications.

2.1.1 Prisms

Prisms are optical components with two or more plane surfaces and are used
to either disperse or redirect light. You are probably most familiar with how
prisms are used to disperse light into its spectral components. Figure 2.3
shows a prism with a ray of light passing through it. The angle α is the
angle at the apex of the prism, θ is the angle of incidence at the first surface
that the ray encounters, and φ is angle through which the ray is bent with
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respect to the direction of the incident ray. The ray is refracted twice. Once
as is passes into the prism and once as it exits the prism. Applying Snell’s
law twice, once at each surface, gives

sin(α+ φ− θ) = sinα
√
n2 − sin2 θ − cosα sin θ, (2.7)

where n is the index of refraction of the prism. The index of refraction de-

Figure 2.3: A prism with a triangular cross section and index of refraction
n.

pends on wavelength so given an incident ray of white light, each wavelength
will be refracted through a different angle φ.

Problem 2.2
Suppose white light is incident on the prism shown in Figure 2.3 at an

angle θ = 35◦ and that the apex angle α = 60◦. What are the refracted
angles for green light (λ = 500 nm) and red light (λ = 700 nm)? Assume
the prism made of fused silica.

Prism’s are also used to change the directions of rays or invert images.
Prisms used in this way often take advantage of total internal reflection and
if designed properly don’t produce any dispersion. Figure 2.4 shows how a
right angle prism redirects rays by 90◦ and inverts the image.

2.1.2 Lenses

An optical lens uses refraction to cause light rays to converge or diverge.
There are a huge number of different kinds of and uses for lens. We will only
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Figure 2.4: A reflecting right-angle prism redirects the rays by 90◦ and
inverts the image.

explore how lenses are used to form images. For simple thin lenses, light
rays from an object are refracted in such a way that an image is formed1. The
optical axis of a thin lens is a straight line passing through the geometrical
center of a lens and joins the two centers of curvature of its two surfaces.
The distance to the image on the optical axis from the center of the lens
satisfies the thin lens equation,

1

i
+

1

o
=

1

f
, (2.8)

where o is the distance from object to the lens, i is the distance from the lens
to the image, and f is the focal length. The focal length is the distance
from the lens to the focal point. The focal point is the point to which rays
that are initially parallel to the axis of the lens are converged or from which
they appear to diverge. Figure 2.5 shows the locations of the focal point for
both a converging and a diverging lens.

A converging lens causes rays from a object to be refracted toward
the axis of the lens (see Figure 2.6). By convention, the object distance, o,
is always positive in equation (2.8), as is the focal length of a converging
lens. If the image distance is positive the images is on the side of the lens
opposite the object and if negative the image is on the same side of the lens
as the object. Converging lenses refract rays towards the symmetry axis of
the lens so by Snell’s law one or both of the surfaces of a converging lens
must be convex.

1A thin lens is thin in the sense that its thickness is small compared to the image and
object distances.
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Figure 2.5: Focal points for converging and diverging thin lenses. By con-
vention, a converging lens has positive focal lengths, f > 0, while diverging
lenses have f < 0.

Figure 2.6: Images formed by converging lens. Figure (a) shows the im-
age position when object is outside the focal length of the lens (o > f).
Figure (b) shows the image position for o < f .
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Problem 2.3
Use the thin lens equation (2.8) to show that for a converging lens, the
image is always on the side opposite of the object for o > f , and on the
same side as the object for o < f .

Images that are formed when rays converge to the image so that the rays
actually go through the image are called real images. Images from which
rays diverge, but don’t actually go through the image are called virtual
images. Figure 2.6(a) shows that the image formed by a converging lens
when o > f is a real image, while Figure 2.6(b) shows that a virtual image
is formed by a converging lens when o < f .

For diverging lenses, one or both surfaces are concave so that rays
are refracted away from the axis of the lens (see Figure 2.7). The focal

Figure 2.7: Ray diagram for a diverging lens. Note that only virtual images
are formed by diverging lenses.

lengths of diverging lenses are negative by convention. Image distances for
diverging lenses are always negative so the images formed by diverging lenses
are always on the same side of the lens as the object and are always virtual
images.

Problem 2.4
Use the thin lens equation (2.8) to show that the image distance is always
negative for diverging lenses.

Simple Refracting Telescopes

Galileo was the first to use a telescope for astronomy and document his ob-
servations. It used one converging lens and one diverging lens. Figure2.8(a)
shows the optical design for Galileo’s telescope. The centers of the two lens
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Figure 2.8: Two versions of the refractor telescope, (a) is the Galilean design
uses one converging and one diverging lens and has a virtual focus. (b) The
Keplerian design uses two converging lenses, and has a real focus.
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define the optical axis. In the figure, light entered from the top through
the converging lens. By itself, the converging lens would bring the light to a
focus at point F , but the diverging lens diverging lens refracts the rays away
from the optical axis. The converging lens at the top of the figure, closest
to the object being studied, is called the objective lens. For astronomical
objects, the objects are essentially located at infinity. If the diverging lens
wasn’t present the converging lens would focus light to a point at F . Point
F is located at focal point of the objective lens at distance fo from it. The
lens at the right is called the eyepiece lens and causes the light to diverge
again into parallel rays so they may be focused by the eye. The net effect is
to compress all of the rays passing through the objective so that they may
pass through the eye’s pupil.

Figure 2.8(b) shows the telescope design attributed to Kepler. Kepler’s
version uses two converging lenses and hence produces an inverted image.
This has the advantage that a set of cross-hairs can be placed at the focus,
F , so that objects can be accurately placed in the field of view. This is
the design typically used on so-called finder telescopes attached to large
reflecting telescopes.

Problem 2.5
Use the thin lens equation to show that for both the Galilean design and
the Keplerian design the two lenses must be placed a distance ` = fo+fe
apart in order for the rays to emerge from the eyepiece parallel. Where
fo is the focal length of objective and the fe is the focal length for the
eyepiece.

One way to think of how a Keplerian telescope works is to consider the
eyepiece as a magnifying glass used to examine the image formed by the
objective. The angular magnification mθ of a telescope is defined to
be the angular size of the object divided by the angular size of the image
examined with the eyepiece. With a little geometry it is easy to show that

mθ = −fo
fe
, (2.9)

where the minus sign is set by convention so that if mθ < 0 the image is
inverted.

Magnification is only one purpose of a telescope. The other perhaps more
important function is to gather light. For both designs, the light that passes
through the objective finally passes through the eyepiece. The larger the
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objective the brighter the image appears. The light-gathering power of
an optical telescope is proportional to the area of the objective lens. Galileo
was able to see the moons of Jupiter for the first time because his telescope
had sufficient light-gathering power, not because of the magnification of his
telescope. If the Galilean moons of Jupiter were brighter they could be
resolved as separate from Jupiter with the naked eye.

Galileo did his observations using his eye as a light detector. Today,
virtually all astronomical observations are done using a solid state device
like a CCD (see Chapter 4) as the detector. Instead of using an eyepiece the
detector is placed at the focal plane of the objective lens and the image is
produced directly on the detector. The focal plane is a plane through the
focal point and perpendicular to the optical axis. The simplest telescope is
just a lens and a detector.

One problem with refracting telescopes is that since the index of re-
fraction depends on wavelength different colors of light come to a focus at
different points. This makes it impossible to obtain a perfect focus. If the
lenses are adjusted so that the red light is in focus, the blue light is out of
focus and visa versa. This effect is called chromatic aberration. Chro-
matic aberration can be reduced, but not completely eliminated by using
compound lenses, lenses that are made of two or more pieces of glass with
different indices of refraction.

2.1.3 Mirrors

A better way to avoid chromatic aberration is to use curved mirrors to
redirect light rays. Most modern astronomical telescopes use mirrors to
gather and focus light. Mirrors with spherical surfaces are easy to analyze
and fabricate so we will consider them first. Figure 2.9 shows the cross
section of a concave spherical mirror of radius r. A ray starting at point O
is reflected from the mirror at point P and passes through the point I. The
optical axis of the mirror is defined by the points O, C, and I. Point C is
at the center of the spherical surface that forms the mirror. The interior
angles of the triangle OCP must add up to π so α + (π − β) + θI = π or
α + θI = β. Likewise for the triangle OIP , α + (π − γ) + (θI + θR) = π or
α+ θI + θR = γ. The law of reflection requires that θI = θR so we have the
two equations

β = α+ θ and γ = α+ 2θ,

where θ ≡ θI = θR. If we eliminate θ between these two equations we get

α+ γ = 2β. (2.10)
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Figure 2.9: Cross section of a concave spherical mirror of radius r. An object
is placed at O a distance o from the mirror. A real image is formed at point
I a distance i from the mirror.

If the object distance o is large compared to the radius of the mirror, then
the incident ray is nearly parallel to the optical axis and

α ≈ 6.0ptPQ
_
o

, and γ ≈ 6.0ptPQ
_
i

,

where 6.0ptPQ
_

is the arc length from P to Q. The definition of angle also
means

β =
6.0ptPQ

_
r

.

Problem 2.6
(a) Show that if the object distance o� r then the incident and reflected
rays are paraxial or approximately parallel to the optical axis.

(b) Use the small angle approximation φ ≈ tanφ to show that when the
incident and reflected rays are paraxial

α ≈ 6.0ptPQ
_
o

, and γ ≈ 6.0ptPQ
_
i

.

Using the relations for α, β, and γ in equation (2.10) gives

1

i
+

1

o
=

2

r
. (2.11)
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This is identical to the thin lens equation (2.8) with the focal length f = r/2.
Evidently the focal point of a convex mirror is a distance r/2 in front of the
mirror. We can use the thin lens equation for mirrors, but with different
conventions for the signs of i and f . Concave mirrors behave like converging
lenses and have positive focal lengths and form real images if o > f , but
in this case a positive image distance i means the image is in front of the
mirror on the same side of the mirror as the object. Convex mirror act like
diverging lenses. They have negative focal lengths, form virtual images, and
the negative image diastase means the virtual image is formed behind the
mirror.

Problem 2.7
Draw a ray diagram like Figure 2.9, but for a convex mirror. Assume
the point O is a distance o = 2r from the mirror. Include the equivalent
points O, P , C, I, and Q in your diagram.

Simple Reflecting Telescopes

Mirrors work like lenses so you should be able to build a telescope using
them. Isaac Newton was the first one to build a reflecting telescope. Fig-
ure 2.10 shows his design. His telescope design consists of two mirrors. Light

Figure 2.10: Newtonian reflecting telescope. The primary mirror in New-
ton’s original telescope was spherical and suffered from spherical aberration.

rays enter the telescope from the left and reflect from a concave spherical
primary mirror at the right. The primary mirror acts like the objective
lens of a refractor and causes the rays to converge. A flat secondary mirror
reflects the converging rays out the side of the telescope tube where it passes
through an eyepiece.



CHAPTER 2. TELESCOPES 38

Newton’s design is still used for small amateur telescopes, but it has a
significant problem. Rays that strike the mirror far from the optical axis
focus to a different point than those that strike close to the optical axis
(see Figure 2.11(a)). This effect is called spherical aberration. Using

Figure 2.11: (a) Spherical mirrors suffer from spherical aberration. (b)
A parabolic mirror eliminates spherical aberration for light rays that are
parallel to the optical axis.

a parabolic mirror (Figure 2.11(b)) eliminates spherical aberration for rays
that are perfectly rays that originate from points along the optical axis,
but introduces other aberrations for rays originating off axis. Designers
of modern astronomical telescopes try to eliminate those aberrations by
using additional lenses or modifying the shape of the primary and secondary
mirrors to compensate for these aberrations. We will explore a few of these
designs in Section 2.4. Telescope designs can be quite complex. They may
consist of a combination of several mirrors and lenses, but we can always
model a telescope as a single objective lens with a single effective focal
length.

2.2 Image Scale

Figure 2.12 shows an HST image of the binary star system Sirius. We know
from parallax measurements that the system’s distance, d = 2.64 pc. If we
could measure the angular separation, θ, between Sirius A and Sirius B from
the image we could use the small angle formula to determine the physical
diameter of orbit, D = dθ. In order to determine θ we have to know how
distances in the focal plane of the telescope translate to angles on the sky.
The the angular distance between two points in the sky divided by the actual



CHAPTER 2. TELESCOPES 39

Figure 2.12: A Hubble Space Telescope image of the binary star system
Sirius.

distance in the focal plane is called image scale2.

Problem 2.8
Suppose the image scale of the image in Figure 2.12 is 3.04 arcsec-
onds/mm and that the distance between the centers of Sirius A and
Sirius B in the focal plane is 2.47 mm. What is the physical distance
between Sirius A and B in AU?

It is easy to derive the image scale if we remember some elementary
optics. Figure 2.13 shows two stars to the left of a telescope objective lens.
The angle on the sky between the two stars is θ. Two rays, one from each
star, pass through the center of the objective and form an image of the two
stars a on the detector. The physical distance between the two star’s images
is x. The image scale

s =
θ

x
. (2.12)

The stars are effectively at infinity so the star’s images are produced in the
focal plane a distance f to the right of the objective. Rays that pass through
the center of the lens are undeflected; hence, the angles on either side of the
objective are the same. The small angle formula tells us that θ = x/f . Using

2The image scale is sometimes called the plate scale. The terminology dates to the
days when all astronomical images were taken using photographic plates.
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Figure 2.13: A ray tracing diagram showing two stars with an angular sep-
aration θ focused by a telescope objective lens. The effective focal length of
the telescope is f and the physical distance between the two star images on
the focal plane is x.

this in equation (2.12) implies that the image scale is just the reciprocal of
the focal length,

s =
1

f
. (2.13)

Since we made a small angle approximation, the equation above has units of
radians per unit length. If we wish to write the image scale in arcseconds per
unit length we have to multiply by the conversion factor, 206,265 arcseconds
per radian,

s =
206265′′

f
. (2.14)

Given the telescope’s image scale, s, we can also determine the field of
view covered by a image taken using a camera. The field of view is just
the angular size of the region on the sky covered by the detector. Suppose
suppose the detector is height h by width w. The field of view, FOV, of the
image is simply the image scale multiplied by the size of the detector

FOV = sh by sw

and has units of angle.

Problem 2.9
Suppose a telescope has a focal length f = 7.2 m.

(a) What is the image scale in arcseconds per micron?
(b) Suppose the telescope uses a square CCD detector that is 24.6

mm by 24.6 mm. What is the field of view of this telescope-detector
system?
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Figure 2.14: The Airy pattern is on the left and a plot of intensity versus
radius is on the right. Eighty-four percent of the light is in the Airy disk in
the center.

2.3 Resolution

As seen from Earth the angular size of all stars except the Sun is exceedingly
small. Betelgeuse has one of the largest angular sizes and it is only about
0.06” in diameter. The ability of a telescope to resolve such small angles
is limited by diffraction and for ground-based telescopes blurring by the
atmosphere.

2.3.1 The Diffraction Limit

Light diffracts as it passes through any opening. This limits any telescopes
ability to resolve small angles. The light from a star is diffracted as it passes
through the lens of a refracting telescope or reflects from the mirrors of a
reflecting telescope. The shape of the mirror or lens is the shape of the
opening through which the light diffracts. If the opening is circular then the
diffraction pattern of a point source is a bullseye pattern with the highest
intensity in the middle and fainter rings around the central maximum. This
bullseye pattern is called an Airy pattern (see Figure 2.14).The angular
distance, θ, between the central maximum and the first diffraction minimum
for a circular opening is

θ =
1.22λ

D
, (2.15)

where, λ is the wavelength of the light, D is the diameter of the lens or
mirror, and θ is in radians.

If two stars have a very small angular separation, their Airy patterns will
overlap and we won’t be able to resolve them as two separate stars. We take
the minimum separation we can resolve to be when the maximum of one
star’s diffraction pattern is coincident with the other star’s first diffraction
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Figure 2.15: The overlapping Airy pattern of two point sources is on the
left. The right shows the intensity versus radius plots for each star and the
total intensity. The sources are separated by and angle equal to the Rayleigh
criterion.

minimum (see Figure 2.15). This is called the Rayleigh criterion. The
minimum angle we can resolve is then given by equation (2.15). This is
another reason that astronomers like big telescopes.

Problem 2.10
The Hubble Space Telescope has 2.4-m primary mirror. It’s detectors
operate in ultraviolet through the infrared part of the spectrum.

(a) What is the minimum angular resolution of the HST at the UV
wavelength of 220 nm?

(b) What is the minimum angular resolution at the IR wavelength
of 2.4 µm?

2.3.2 Atmospheric Seeing

Because of the atmosphere the resolution of all large ground based opti-
cal telescopes is worse than the diffraction limit discussed above. As the
light passes through the atmosphere, different parts of the wavefronts pass
through air of different densities and hence indices of refraction. The change
in the wavefront due to is effect is called scintillation. Scintillation distorts
the image causing it to change size, shape, position and brightness. These
variations happen over a period of from one to a thousandth of a second.
Seeing refers to how much a stellar image is blurred by the atmosphere.
Quantitatively, most astronomers define the seeing to be the full width at
half maximum (FWHM) of the stellar profile. The best astronomical sites in



CHAPTER 2. TELESCOPES 43

the world typically have seeing on the order of a few tenths of an arcsecond.
At most observatories seeing of an arcsecond is considered to be quite good.
Of course the seeing at a any site may vary depending on the atmospheric
conditions.

There are ways to reduce seeing. One is to put the telescope in orbit
above the atmosphere. Being above the atmosphere, the Hubble Space Tele-
scope is diffraction limited. It’s resolution is about a factor of ten better
than the best ground based telescopes. Speckle interferometry and adaptive
optics are two techniques used at ground based observatories to reduce the
effects of atmospheric seeing. These techniques are beyond the scope of this
handbook, but you can learn more about them in see Chromey [6, Section
5.42], Bradt [4, Section 5.5], or Tyson [14].

Problem 2.11
Compute the size of the primary mirror of a telescope whose diffraction
limited resolution is equal to a seeing of one arcsecond for light in the
middle of the visible spectrum (λ ≈ 500 nm).

2.4 Telescope Optical Designs

Telescopes are often characterized by their focal ratio sometimes called the
f-number or f-ratio. The f-ratio is defined as the effective focal length of
telescope divided by the diameter of the objective lens or primary mirror.
Galileo’s original telescope had a 37-mm diameter objective lens with a focal
length of 980 mm. This gave his telescope a an f-ratio of about 26. The
f-ratio is usually written as f/26.

The first astronomical telescopes were refractors, but virtually all as-
tronomical research telescopes today are reflectors or use both mirrors and
lenses. Telescopes that use both refractive and reflective elements are called
catadioptric telescopes. Refracting telescope designs might use a collec-
tion of lens to form an image, but they can all be thought of as a single
equivalent objective lens. However, there are a huge number of different
designs for reflectors and catadioptric telescopes.

2.4.1 Traditional Designs

Figure 2.16 shows a few of the many traditional designs for reflecting and
catadioptric telescopes. Keep in mind that most large research telescopes
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Figure 2.16: Four common telescope optical designs. (a) The Prime fo-
cus design. (b) The Cassegrain design. (c) A Schmidt Camera. (d) The
Schmidt-Cassegrain design.

can be used in a variety of different configurations each having a different
f-ratio. For example, the Hale 200-in telescope can be used in a prime focus
mode (f/3.3), a Cassegrain mode (f/16) and a coudé mode (f/30). Let’s
explore the different designs and the advantages and disadvantages of each.

Prime Focus Design

Figure 2.16(a) shows the prime focus design. This is the simplest design
consisting of nothing more than a parabolic primary mirror. It is just the
Newtonian design without the secondary mirror. The detector is simply
placed at the focus of the primary mirror. Of course, this only works for large
telescopes where the detector doesn’t obstruct too much of the aperture.
This designs disadvantage is the same as its Newtonian cousin. Light rays
that aren’t aren’t parallel to the optical axis produce optical aberrations in
the focal plane. These aberration can be reduced by using correcting optics
mounted in front of the detector. The primary advantage of the prime focus
design is that relative to the Cassegrain and Gregorian designs discussed
below, the prime focus usually has a smallest f-ratio. For a given primary
mirror size, a small f-ratio means a smaller focal length and hence a larger
image scale and field of view.

It is impossible to place a large instrument such as a high resolution
spectrometer at the prime focus, but the light can be redirected by mirrors
to place the focus at a more convenient location. Figure 2.17 shows two
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Figure 2.17: (a) Nasmyth focus. (b) Coudé focus.

designs that move the focus to locations where large instruments can be
mounted. Figure 2.17(a) shows the optical path for the Nasmayth focus
which is used on a telescope with an alt-az mount. In this design, light from
the secondary is redirected to a focus that lies along the altitude axis of
the mount. A platform attached below to the telescope below the focus can
support a large instrument.

Telescopes with an equatorial mounted use the coudé design illustrated
in Figure 2.17(b) to place the focus at a location that stays fixed as the
telescope moves. This configuration is often used for heavy or bulky in-
struments such as high dispersion spectrographs. The coudé system has a
major disadvantages for imaging: the field of view is small owing to the
large f-number and rotates as the telescope tracks an object across the sky.

Cassegrain Design

The Cassegrain design (Figure 2.16(b)) is probably the most common design
for research telescopes. The primary mirror reflects light to a secondary
mirror which in turn reflect the light back down through a hole in the center
of the primary where the light comes to a focus. The location of the focus
makes is easy to mount instruments on the back of the telescope. The
classical Cassegrain design uses a parabolic primary mirror and a convex
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hyperbolic secondary mirror which lengthens the focal length of the system
to be several times that of the primary mirror alone. Unfortunately, this
design is subject to large aberrations so that light rays that converge off
the optical axis don’t come to a sharp focus. These aberrations are reduced
significantly by using a hyperbolic primary mirror and adjusting the shapes
of the primary and secondary to reduce optical aberrations. This is type of
Cassegrain is called a Ritchey-Chrétien design and is quite common. Many
large research telescopes can be configured to either mount a detector at
the prime focus or to place a secondary mirror near the focus to turn the
telescope into a Cassegrain design.

Catadioptric Designs

Figures 2.16(c) and (d) show two designs optimized to produce a large field
of view. They both use both reflective and refractive optics. In the Schmidt
Camera design, light passes through a refractive element called a corrector
plate, reflects of a spherical primary mirror, and comes to focus on a curved
focal surface inside the telescope. The corrector plate removes spherical
aberration. In the first Schmidt cameras, a photographic plate was carefully
forced into a curved shape and placed at the focal surface. Schmidt cameras
can produce fields of view as large as eight degrees.

The disadvantages of the Schmidt design is the location and curva-
ture of the focal surface. The Schmidt-Cassegrain design shown if Fig-
ure 2.16(d) eliminates these problems by using a curved secondary to reflect
light back through the primary to the Cassegrain focus. This has the added
benefit of allowing the designer to shape the secondary to not only elimi-
nate the curvature of the focal surface, but to further reduce other optical
aberrations.

2.4.2 Modern Telescope Designs

Many modern telescopes are one of the traditional designs described above.
The Hubble Space Telescope for example is a Ritchey-Chrétien design. The
Hale 200-inch telescope completed in 1948, the worlds largest telescope until
1976, was built to operate in a prime focus mode, a Cassegrain mode, and a
coudé mode. Beginning in the early 1970s designers began to explore more
unconventional designs. The Multiple Mirror Telescope (MMT) completed
in 1979 was one of the first. The MMT employed six mirrors, each with a
diameter of 1.8 m. This gave it the equivalent light gathering area of a 4.5-
m telescope. At the time of its construction essentially all major telescopes
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Figure 2.18: The James Webb Space Telescope. Each hexagonal segment in
the primary mirror is 1.32 m in diameter. The total length of the sun shield
is about 20 m.

used an equatorial mount. The MMT and all large optical telescopes since
the MMT have been built with alt-az mounts.

The larger the primary mirror of a telescope, the greater the telescopes
light gathering power. The Hale telescopes 200-in primary mirror is made
of Pyrex glass and weighs about 14 tons. It had to be made this massive to
maintain the shape of its reflective surface. Mirrors any larger than this will
deform under their own weight as they are moved to point the telescope.
The twin Keck 10-m telescopes built in the 1990s avoided this problem by
constructing the primary mirror out of 36 smaller hexagonal mirrors. The
individual mirrors are actively controlled to maintain the correct shape to
within a few nanometer as the telescope is pointed. This sort of segmented
design coupled with actively controlling the primary’s shape is now common
on the worlds largest telescopes.

The James Webb Space Telescope (JWST) shown in Figure 2.18 is a
particularly innovative design. The JWST is the successor to the HST and
is currently scheduled to launch in 2018. The the primary mirror is made up
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of 18 hexagonal segments and has an equivalent diameter of 6.5 m. It will
be put into at the EarthSun L2 point3. It is optimized to work in the long-
wavelength visible to the mid-infrared. The 16 segments will unfold after
launch and be actively controlled and adjusted periodically to maintain an
optimum image quality.

Supplementary Problems

Problem 2.12 Derive the law of reflection from Fermat’s Principle.

Problem 2.13 Derive the Snell’s Law from Fermat’s Principle.

Problem 2.14 Angular size of orbits of Galilean satellites comported to
resolution of the naked eye.

3L2 is one of the five Lagrange points. It is a point fixed with respect to a line from
the Sun to the Earth. It is 1.5 × 106 km away from the the nighttime side of the Earth.



Chapter 3

Measuring Light

Virtually everything we know about the cosmos comes from the study of
electromagnetic radiation. We have sent spacecraft to a few nearby objects
in our solar system to analyze or bring back samples. We routinely detect
cosmic rays—high energy particles originating in spectacular astrophysical
events like supernova. But most of what we know comes from measuring
the intensity of electromagnetic radiation.

3.1 From the Stars to Our Detector

We commonly refer to the brightness of a star, but what exactly do we mean
by brightness? Astronomers quantify the brightness of a celestial object by
specifying the flux or flux density F received from the star.1 The flux is
the total energy from a source that crosses a unit area per unit time:

F =
energy

time area
.

The total power output from an object is called the luminosity. Suppose
a star of luminosity L is emitting its light isotropically (the same in all
directions). The star’s flux measured at distance r from the star is just the
luminosity of the star divided by the total area 4πr2 of a sphere centered on
the star:

F =
L

4πr2
. (3.1)

Equation (3.1) is the famous inverse square law of radiation.

1What astronomers commonly call flux or flux density physicists typically call irradi-
ance. Physicists also use the term radiant flux instead of luminosity to mean the total
power output of a source.

49
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Problem 3.1
The luminosity of the star Vega is 1.5 × 1028 W and it is at a distance
of 7.68 pc. What is flux of Vega at Earth in W/m2?

The detectors we use at telescopes to measure the brightness of a star re-
ally measures the power delivered by electromagnetic radiation or the num-
ber of photons collected. Even the retina of our eye works as a photon
counter. Astronomical objects are usually quite faint so the main function
of a telescope is to gather light. The simplest telescope is just a converging
lens. To measure the brightness of a star we would just point the lens at the
star and place a detector in the focal plane to capture all the light in the
star’s image. If the flux from an object is F and the area of the collecting
area of the telescope is A then the power that falls on the detector is

P = AF.

Note that the larger the area of the objective lens or primary mirror, the
greater the power focused on the detector. This makes it clear why as-
tronomers continue to crave telescopes with ever larger apertures. Currently
the largest functional telescopes in the world have apertures diameters on
the order of 10 m.

Problem 3.2
Suppose you are observing Vega using the Keck 10-m telescope. What
is the power at the detector assuming the primary mirror is circular and
perfectly reflecting? Ignore things like atmospheric extinction.

When F and L above are the total flux and power output integrated
over all wavelengths and measured by a perfect detector they are referred
to as the bolometric flux Fbol and bolometric luminosity Lbol. Mea-
suring the bolometric flux is extremely difficult. There are no detectors
capable of measuring power over the entire electromagnetic spectrum. In
practice we measure different parts of the spectrum with different detectors.
The monochromatic flux is the flux per unit wavelength Fλ or frequency
Fν .2 Integrating the monochromatic flux over the entire spectrum gives the
bolometric flux density,

Fbol =

∫ ∞
0

Fλdλ =

∫ ∞
0

Fνdν. (3.2)

2Physicists usually call the monochromatic flux the spectral irradiance.
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The monochromatic flux is usually what we mean when we refer to the
spectrum of the light. We call both Fλ and Fν the monochromatic flux.
They are related, but they have different units and are not numerically
equal.

Problem 3.3
Use that facts that Fλdλ is the flux in the range of wavelengths between
λ and λ+dλ and that Fνdν is the flux in the range of frequencies between
ν and ν + dν to show that

λFλ = νFν . (3.3)

Hint: Don’t forget that λν = c for light.

The units Fλ are energy per unit time per unit area per unit wavelength.
Its units could be written as W m−3, but this is almost never done. Since we
will often be working with wavelengths in nm it is more convenient to use
the units W m−2 nm−1. Typical units for Fν are W m−2 Hz−1. Another unit
called the janskys (Jy) is used extensively by radio astronomers. Kark Jan-
sky essentially created the field of radio astronomy when he discovered radio
waves emanating from the center of our galaxy; 1 Jy = 10−26 W m−2 Hz−1.
The monochromatic flux of an astronomical object defines its spectrum.
Figure 3.1 shows the spectrum of several stars of different spectral classes.

In practice we can’t measure the bolometric or monochromatic fluxes
directly. Different kinds of detectors are sensitive to light of different wave-
lengths and any one detector’s sensitivity varies as a function of wavelength.
The problem is even worse for ground based telescopes. The atmosphere
attenuates some wavelengths more than others. We’ll see how to correct for
atmospheric effects in Chapter 6. If we ignore effects of the atmosphere for
the time being, then the flux measured by a telescope is

F =

∫ ∞
0

R(λ)Fλdλ, (3.4)

where R(λ) is called the response function of the detector-telescope sys-
tem. The response function specifies the fraction of the the flux of wave-
length λ that is registered by the detector-telescope system. The power P
measured by the detector-telescope system is

P = A

∫ ∞
0

R(λ)Fλdλ. (3.5)
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Figure 3.1: The spectrum of some O, B, and A spectral class stars. These
are just plots of monochromatic flux Fλ.
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Astronomers have devised sets of agreed upon response functions that
define several standard photometric systems. Having well defined response
functions allows astronomers to compare observations made with different
telescope-detector systems. They use filters to make sure the response func-
tion of their system matches one of the standard systems. The response of a
system depends on the reflectivity or transmissivity of the telescope optics
To, the detectors efficiency at detecting light of wavelength e(λ), and the
transmissivity of the filter φ(λ)

R(λ) = Toe(λ)φ(λ). (3.6)

The transmissivity of the filter φ(λ) is called the filter function. The
quantum efficiency e(λ) is the fraction of incoming photons that are ac-
tually detected. The transmissivity of the optics To usually doesn’t depend
on wavelength over the bandpass of the filter.

Problem 3.4
The star Vega is one of the brightest in the night sky. In this problem
you will estimate the power from Vega measured by a detector on a
small telescope.
(a) Use equations 3.5 and 3.6 to show that

PD = ATo

∫ ∞
0

e(λ)φ(λ)Fλdλ.

(b) The star Vega’s monochromatic flux above the atmosphere at 550
nm is approximately 3.6×10−11W m−2nm−1. Estimate the power from
Vega on a detector attached to a 0.61-m telescope. Assume the optics
transmissivity is 0.7 and an average quantum efficiency is 0.5 at 550
nm. Assume the filter function is a step function with a maximum of
0.5 centered on 550 nm and 89 nm wide. In this case include the effect
of the atmosphere by assuming the atmospheric transmissivity is about
0.8.

3.2 The Magnitude System

Long before the physics of electromagnetic radiation was understood, as-
tronomers were classifying stars by their apparent brightness. In the second
century BC a Greek astronomer named Hipparchus of Nicea compiled a cat-
alog of the position and brightness of nearly a thousand stars. He knew
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nothing of luminosity or flux. Instead he classified stars by their brightness
as seen by the unaided eye. He assigned a number or magnitude to each
star. Magnitude one stars were the brightest in the night sky and magnitude
six stars were the faintest he could see. The eye has a logarithmic response
to light energy so that five magnitudes corresponds to a factor of about 100
in flux. In 1856 Norman R. Pogson of Oxford tied the magnitude system
to flux by proposing that five magnitudes corresponds to a factor of exactly
100 in flux. The magnitude m is therefore defined as

m = −2.5 log(F ) + C. (3.7)

The constant C defines the zero point of the magnitude system through
the equation C = −2.5 log(F0), is the flux density from a m = 0 star.
Astronomers originally set the zero point to closely approximate Hipparchus’
magnitudes by assigning the star Vega to be m = 0. This essentially makes
Vega the standard against which all the other stars are measured. The
problem with this system is that Vega is slightly variable, by about 0.03
magnitudes, and has an atypical infrared spectrum. Today the flux for zero
magnitude is set by averaging the magnitudes of many stars or by calibrating
the scale in absolute flux units. In practice we always measure the magnitude
of a star by comparing its flux to a standard star with known magnitude.
The difference in the magnitude of the two stars m1−m2 is independent of
the constant C,

m1 −m2 = −2.5 log

(
F1

F2

)
, (3.8)

where F1 and F2 are the measured fluxes from stars with magnitudes m1

and m2 respectively.

Problem 3.5
Use equation (3.7) to prove equation (3.8).

Problem 3.6
Solve equation (3.8) for the ratio F1/F2 to show that

F1

F2
= 10−0.4∆m, (3.9)

where ∆m = m1 −m2.
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3.2.1 Absolute Magnitude and Distance Modulus

Astronomers seem to love the magnitude system. They use magnitudes to
specify luminosities and distances as well as flux densities. The absolute
magnitude M is defined as the the apparent magnitude a star would have
if observed from a distance of 10 parsecs (pc). using the inverse square law
[equation (3.1)] and the definition of magnitude [equation (3.7)] you can
show that

M = −2.5 log(L) + C ′, (3.10)

where C ′ is a constant related to C. Specifying the absolute magnitude of
an object is equivalent to specifying its luminosity.

Problem 3.7
The Sun has an absolute bolometric magnitude of 4.74, what is its ap-
parent magnitude seen here on Earth?

The distance modulus µ is defined as the difference between a celestial
objects apparent and absolute magnitudes and it depends only on the objects
distance

µ ≡ m−M = 5 log(r)− 5, (3.11)

where r is the distance to the object in parsecs.

Problem 3.8
Use the definition of absolute magnitude and the inverse square law of
radiation, equation (3.1), to prove equation (3.11).

Solving equation (3.11) for the distance gives

r = 10(µ+5)/5. (3.12)

Here again remember that r is given in the units of parsecs.

Problem 3.9
A type Ia supernova (SNIa) is observed to have an apparent magnitude
of 12.1 at its brightest. Most SNIa have an absolute magnitude of M =
−19.3 at maximum light.
(a) What is the distance modulus for this supernova?
(b) What is the supernova’s distance in Mpc?
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3.2.2 Standard Filter Systems

In practice we never measure the bolometric magnitude directly because our
detectors are only sensitive to light in a finite wavelength band. We can also
get a good deal of information from knowing the color of the object. In
order to compare observations made a different observatories with different
detectors, astronomers have agree on standard response functions. One of
the first and still one of the most commonly used is the Johnson–Cousins
UBVRI system. Figure 3.2 shows the response functions for the UBVRI

Figure 3.2: Response functions for the Johnson–Cousins UBVRI photomet-
ric system.

system.3

Table 3.1 lists the bandpasses for the Johnson–Cousins UBVRI system
with the approximate central wavelength and width of each response func-
tion. The peak response of the U bandpass is in the ultraviolet part of the
spectrum. The B response peaks in the blue and has response similar to
photographic emulsions. The V filter peaks in the green. The V stands for
visual since the V-band’s response is close to that of the human eye. The
R and I bands peak in the red and the near infrared part of the spectrum.

3Johnson originally defined the R and I bands differently. The curves shown here are
for Cousins’ modifications to the original system. Sometimes you will see the Johnson
bands designated RJ and IJ and the Cousins bands as RC and IC .



CHAPTER 3. MEASURING LIGHT 57

Table 3.1: Johnson–Cousins UBVRI system response function effective
wavelengths and widths. (Data from Bessell[1].)

Bandpass U B V R I
λeff (nm) 366 436 545 641 798
∆λ (nm) 65 89 84 158 154

Astronomers work hard to make sure their telescope-detector systems match
the response functions.

The magnitudes for this system are designated by capital letter. For
example, the magnitude for the U band is

U = −2.5 log(FU ) + CU , (3.13)

where CU sets the U-band zero point. FU is

FU =

∫ ∞
0

RU (λ)Fλdλ, (3.14)

where RU (λ) is the U-band response function. The zero point constants
for U , B, V , R, and I are all different and were originally chosen so that
Vega had zero magnitude in all bands. As discussed above, the zero-point
standards are chosen differently now, but Vega’s magnitude is still close to
zero using these new standards. The extended UBV system is describe in
more detail in Chapter 6.

3.2.3 Color Indicies

If we were able to measure a stars monochromatic flux at all wavelengths
we could determine its bolometric magnitude,

mbol = −2.5 log(Fbol) + Cbol, (3.15)

but this would require a complete spectrum of the star and that is hard to
measure. One way to approximate the whole spectrum is to measure the
relative fluxes through our set of standard filters. This is a sort of crude
spectroscopy, but it does gives us the color of the star. More blue light
than red makes the star look bluish. A quantitative measure of the color
is called the color index. It is just the difference between the magnitudes
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in two different band passes, and gives the ratio of the fluxes in these two
bandpasses. For example the B − V color index is

B − V = −2.5 log

(
FB
FV

)
+ CB−V , (3.16)

where CB−V ≡ CB − CV . A large B − V color index implies that B > V
so the star is less blue (larger B magnitude) than one with a small B − V .
Hence, a star with large B − V color index is redder than one with a small
B − V .

Color indices are so useful in fact that most standard star catalogs list
the V magnitude and the color indices for stars rather than the individual
magnitudes. The color indices of a star are also independent of its distance
so that

B − V = MB −MV , (3.17)

where MB and MV are the absolute magnitudes of the star in the B band
and V band respectively.

Problem 3.10
Prove equations (3.16) and (3.17).

If the color indices of a star are known then in principle we should be
able to approximate its bolometric magnitude. Astronomers have used a
combination of stellar-spectra modeling and observations to derive a bolo-
metric correction BC that is used to determine the bolometric magnitude
of a star from its V magnitude,

BC = mbol − V. (3.18)

The bolometric correction depends on the spectral and luminosity class of
a star. Typically astronomers use the color indices or spectrum of the star
to determine it type and then apply the bolometric correction to the V
magnitude to determine the star’s bolometric magnitude.

In Chapter 6 we will discuss another photometry system originally de-
veloped for the Sloan Digital Sky Survey. This system consists of five filter
bands u′, g′, r′, i′, and z′ that cover the near UV to the near IR part of the
spectrum. One can define color indices for this system, usually referred to
as the ugriz system, in the same way color indices are defined for the UB-
VRI system. For a detailed discussion of this an other standard photometric
systems see Bessell[1].



CHAPTER 3. MEASURING LIGHT 59

3.3 Measuring Magnitudes

Detectors used for measuring light can be classified into two broad categories:
photon counting detectors and detectors for measuring power. Magnitudes
are defined in terms of flux densities. How do we translate from measure-
ments made at the telescope to magnitudes in a standard system? We start
by noting that we typically measure a star’s magnitude m by comparing
it to a standard star whose magnitude ms is known. Using equation (3.8)
gives

m = ms − 2.5 log

(
F

Fs

)
, (3.19)

where F and Fs are the fluxes from the unknown star’s flux and standard
star’s flux respectively. These fluxes depend on the response functions for the
standard bandpass being used [see equation (3.4)]. If the detector measures
power then since P = FA, we can write equation (3.19) in terms of the
measure powers of the unknown and the standard stars,

m = ms − 2.5 log

(
P/A

Ps/A

)
= ms − 2.5 log

(
P

Ps

)
. (3.20)

When using this method, measuring the power is equivalent to measuring
the flux.

3.3.1 Counting Photons

Unfortunately, this isn’t quite what we want. Most modern detectors that
work in the in ultraviolet through near infrared parts of the spectrum are
photon counters—they don’t measure power. The photon count rate

ṅ = A

∫ ∞
0

Rp(λ)ṅλdλ, (3.21)

where Rp(λ) is the photon response function and ṅλ is the monochro-
matic photon flux. Here A is again the collecting area of the telescope.
The monochromatic photon flux is the number of photons of wavelength
λ that are counted each second per unit of telescope collecting area. We
can relate the monochromatic photon flux to the monochromatic flux by
dividing the energy flux by the energy of a single photon Ephoton = hc/λ,

ṅλ =
Fλ
hc/λ

. (3.22)
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This allows us to rewrite in count rate in terms of the flux density,

ṅ = A

∫ ∞
0

Rp(λ)
λ

hc
Fλdλ. (3.23)

Comparing equation (3.4) for the measured flux and (3.23) we see that if
R(λ) ∝ λRp(λ), then ṅ ∝ F and

m = ms − 2.5 log

(
ṅ

ṅs

)
. (3.24)

All we need to do to make sure our photon counting detector gives magni-
tudes in the standard system is to adjust the photon response function with
filters to make sure Rp(λ) ∝ R(λ)/λ.

Problem 3.11
Show that if Rp(λ) ∝ R(λ)/λ then m = ms − 2.5 log (ṅ/ṅs).

3.3.2 Uncertainties in Brightness Measurments

Even with a perfect, noise-free detector we cannot measure the brightness of
a star with absolute certainty. The reason for this is that the emission and
detection of photons is probabilistic. To clarify this lets imagine a noiseless
detector is used to count the number of photons from a star in a period of
one second. There is no uncertainty in number of photons registered by the
detector. Nevertheless, if we repeat the measurement we will get a different
number. A different number of counts arises because each measurement is
a single sample drawn from a Poisson distribution (see Appendix B). This
means that if we count n photons with our detector, the best estimate of
the uncertainty in the number of counts δn =

√
n. If we measure a star

and get n = 10 000 then δn = 100 and the fractional uncertainty in our
measurement is δn/n = 0.01 or 1%. We define the signal-to-noise ratio
to be the inverse of the fractional uncertainty,

SNR =
n

δn
. (3.25)

In the example above where n = 10 000 and δn = 100, SNR = 100. Of
course real photon detectors aren’t noise-free. We have to add the detector
noise to the photon counting noise. If the detector noise σdet isn’t correlated
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with the counting noise, we add the two sources of noise in quadrature. The
counting noise is

√
n so

δn =
√
n+ σ2

det, (3.26)

where σdet is expressed in equivalent photon counts.

Problem 3.12
Suppose we are using a photon counting detector with σdet = 90 photons
to measure the brightness of a star. Using this detector we count 55 232
photons.
(a) What is the uncertainty in the measurement?
(b) What is the signal-to-noise ratio for the measurement?

Equation (3.24) tells us that the brightness of a star is related to the
photon count rate ṅ, not the raw number of counted photons n. But, if
we expose our detector to the starlight for a time t then n = ṅ t. We can
rewrite equation (3.24) in terms of photon counts,

m = ms − 2.5 log

(
n/t

ns/ts

)
, (3.27)

where t is the exposure time for the measured star and ts is the exposure time
for the standard star. By using equation (B.27) for error propagation from
Appendix B we can derive an equation for the uncertainty in magnitudes,

δm =
2.5

ln(10)

δn

n
≈ δn

n
, (3.28)

where we have assumed that the uncertainties in the standard star magni-
tude, the count rate of the standard star, and the exposure time are neg-
ligible. The uncertainty in the magnitude is approximately equal to the
fractional uncertainty in the number of photons or is inversely proportional
to the signal-to-noise ratio,

δm ≈ 1

SNR
. (3.29)

This means that if we make a measurement with an uncertainty of 0.1 mag-
nitudes, the fractional uncertainty in counts is 10% and the signal-to-noise
ratio is 10.
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Problem 3.13
Use the equations for error propagation in Appendix B to prove equation
(3.28).

Hint: Remember log(x) = ln(x)
ln(10) .

3.4 Estimating Exposure Times

When preparing to measure the brightness of an object we often know the
approximate magnitude, and we need to estimate the exposure time to use
to get a certain accuracy in our final measurement. In order to calculate
an exposure time we need to have at least a rough estimate the count rate
produced on the detector by a star of a given magnitude. The count rate
depends on the collecting area of our telescope, the response function of the
telescope-detector system, and of course the magnitude of the star. If we
knew the count rate for a zero magnitude star is ṅ0, then the count rate for
a star of magnitude m is

ṅ = ṅ010−m/2.5. (3.30)

Hence, if we know the count rate for a zero magnitude star we can always
calculate the rate for any other magnitude.

Problem 3.14
Use equation (3.24) to derive equation (3.30).

The count rate ṅ0 depends on the flux from a zero magnitude star.
Table 3.2 gives the effective monochromatic flux for zero-magnitude A0
stars in the Johnson-Cousins UBVRI photometric system. The effective
monochromatic flux is defined as

Fλeff =

∫∞
0 R(λ)Fλdλ∫∞

0 R(λ)dλ
(3.31)

and is just the average of the monochromatic flux over the bandpass. The
effective monochromatic flux depends on the spectrum of the star so objects
whose spectra differs from an A0 star will have different Fλeff , but the data
in the table will still allow us to calculate an approximate photon count rate.

Equation (3.23) allows us to compute the photon count rate from the
monochromatic flux. By using the definition of Fλeff in equation (3.23) and
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Table 3.2: Effective monochromatic fluxes and photon count rates for a zero-
magnitude A0 in the Johnson-Cousins UBVRI photometric system. The
effective wavelengths and widths are the same as those Table 3.1. The flux
data are derived from Bessell et al. [2].

Bandpass U B V R I
λeff (nm) 366 436 545 641 798
∆λ (nm) 65 89 84 158 154
Fλeff (×10−13 W m−2 nm−1) 418 632 363 218 113
ṅλeff (×106 s−1 m−2 nm−1) 77 139 100 70 45

the fact that Rp(λ) ∝ R(λ)/λ we can show that

ṅ = A
Fλeff

hc/λeff

∫ ∞
0

RP (λ)dλ.

If we define the effective monochromatic photon flux

ṅλeff =
Fλeff

hc/λeff
, (3.32)

then

ṅ ≈ A ṅλeff

∫ ∞
0

RP (λ)dλ. (3.33)

Values for ṅλeff for a zero magnitude star are also listed in Table 3.2.
We want only a rough estimates so we can make some approximate ap-

proximations to evaluate the integral. Equation 3.6 shows that the response
function depends on the the transmissivity of the optics To, the efficiency
of the detector e(λ), and the filter function φ(λ). If we assume the detector
efficiency is roughly constant across the bandpass, and that the filter func-
tion is approximately a step function centered on λeff with width ∆λ and
with a height φ′, then ∫ ∞

0
RP (λ)dλ ≈ Toe′φ′∆λ,

where e′ is the detector efficiency in the bandpass. Of course, if we are
working with a ground-based telescope we should also include a transitivity
factor for the atmosphere. We will assume here we are using a space-based
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telescope. Here R′p is a constant equal to the fraction of the incoming pho-
tons that make it through the optics and are detected by the detector. We
can now write equation (3.33) for the count rate in a more useful form

ṅ ≈ AToe′φ′ṅλeff∆λ. (3.34)

This equation allows us to estimate the photon count rate if we know its
magnitude, the characteristics of our telescope-detector system, and which
standard photometric filter we are using.

Let’s work through and example to clarify how we use equation (3.34).
Suppose we wish to measure a V = 9.5 star with a 0.41-m telescope. We will
assume the transmissivity of the optics To ≈ 0.8, that the detector efficiency
e′ ≈ 0.5 and the transmissivity of the filter is φ′ = 0.6. Using the values of
ṅλeff and ∆λ for the V-filter in Table 3.2 along with the values of To, e

′, and
φ′ in equation (3.34) we get the photon count rate ṅ0 for a V = 0 star,

ṅ0 ≈

[
π

(
0.41

2
m

)2
]

(0.8)(0.5)(0.6)

(
100× 106 1

s m2 nm

)
(84 nm)

≈ 2.7× 108 s−1.

The first factor in brackets is the computed collecting area of the 0.41-m
telescope. We now use equation (3.30) to compute the count rate for a
V = 9.5 magnitude star and get

ṅ = (2.7× 108 s−1)10−9.5/2.5 = 4.2× 104 s−1.

Problem 3.15
Compute the expected photon count rate from a B = 6.5 star using

a 1-m telescope. The transmissivity of the optics is To = 0.8, and the
filter transmissivity is φ′ = 0.5. Most astronomical detectors have poor
blue efficiency so assume e′ = 0.3.

We now have a way to estimate the detector’s photon count rate. The
next step is to decide how accurately we would like to know the result.
Longer exposure times allow us to collect more photons and hence reduce
the uncertainty in the measurement. Suppose we want to measure the mag-
nitude of our V = 9.5 star with and accuracy of 0.01 magnitudes. Equation
(3.29) tells us this measurement will requires a SNR = 100 or

n

δn
= 100.
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If we assume a noiseless detector, σdet = 0, then δn =
√
n and

n

δn
=
√
n = 100,

so n = 10 000. Given that n = ṅ t where t is the exposure time,

t =
n

ṅ
=

1.0× 104

4.2× 104 s−1
= 0.24 s.

We need at least a 0.24 s exposure time to measure our star with an SNR =
100 or an accuracy of 0.01 magnitudes.

Problem 3.16
Use the count rate of Problem 3.15 to estimate the exposure time for
the B = 6.5 if we require an accuracy of 0.005 magnitudes.

If the detector isn’t noiseless, and no detector is, the exposure time
calculation is more complicated. In terms of the signal to noise ratio

SNR =
ṅ t√

ṅ t+ σ2
det

. (3.35)

Solving this equation for t gives us an equation for the exposure time in
terms of the photon count rate and the desired signal-to-noise ratio,

t =
SNR2

ṅ

(
1

2
+

√
1

4
+
( σdet

SNR

)2
)
. (3.36)

Problem 3.17
(a) Use equation (3.35) to derive equation (3.36). Hint: Remember,
exposure times are always positive.
(b) Show that if σdet � SNR that equation (3.36) reduces to the equa-
tion for a noiseless detector

t =
SNR2

ṅ
. (3.37)
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Problem 3.18
Compute the exposure time for the B = 6.5 star of Problem 3.15

assuming a detector noise σdet = 90.

Supplementary Problems

Problem 3.19 We ignored the effects of the atmosphere in this chapter,
but suppose the atmospheric absorbed and scattered 20% of the light from
a star so that the atmospheric transmissivity TA = 80.
(a) Redo the calculation of Problem 3.18, but this time taking into account
absorption and scattering by the atmosphere.
(b) What is the atmospheric extinction in magnitudes, in other words by
how much is the magnitude of a star increased because of absorption and
scattering by the atmosphere.

Problem 3.20 Suppose we wanted to measure the V magnitude of a star
with an accuracy of 0.01 magnitudes. We know that the approximate magni-
tude of the star is V = 16.5. We are using a telescope with a 2.4-m primary
mirror. Assume the transmissivity of the telescope optics is To ≈ 0.8, the
detector efficiency in the V-band is e′ ≈ 0.9, and the transmissivity of the
V filter is φ′ ≈ 0.8. You may ignore atmospheric extinction. What approxi-
mate exposure time would we need to make the measurement?

Problem 3.21 Suppose we also wanted to measure the B − V color index
of the star of Problem 3.20 with and accuracy of 0.03 magnitudes. What
exposure time will we need for the B-magnitude measurement? Suppose we
have already made the V measurement with an accuracy 0.01 magnitudes,
that To is the same in the B-band as the V-band, but that e′ ≈ 0.5 and
φ′ ≈ 06. Assume you know B ≈ 16.0. You may again ignore atmospheric
extinction.



Chapter 4

Charge Coupled Devices

Hipparchus and Galileo used their eyes to make astronomical observations,
but human eyes aren’t very good light detectors for astronomy. They don’t
have a linear response, their sensitivity is limited, and there isn’t a good
way to quantify their output. Astronomers began using photographic plates
as light detectors in the middle of the 19th century. By the early 20th cen-
tury photographic plates were used for photometry and spectroscopy as well
as imaging. Photographic plates allowed for long exposure times so they
could detect low light levels, but like the human eye they don’t have a linear
response. By 1950 astronomers began using photomultipliers for photome-
try, but most spectroscopy and imaging still used photographic plates. In
the 1970s astronomers began to experiment with solid-state arrays for both
imaging and spectroscopy. The most common type of solid-state array used
in astronomy today is a charge coupled device (CCD). CCDs were invented
by Willard Boyle and George Smith in 1969 at Bell Labs who originally
intended them to be used as memory storage devices. Bell Labs engineers
quickly realized that also made good low-intensity light detectors. CCDs are
far more efficient at detecting light than either photographic plates or pho-
tomultipliers, have a linear response, and have a broads spectral response.
They are by far the most common light detectors used by astronomers at
visual and near infrared wavelengths.

4.1 Light Detection

CCDs are two-dimensional arrays of photosensitive cells called picture el-
ements or pixels. Most CCDs used in astronomy have several million
pixels. The pixels are anywhere from 5 to 20 µm in size. Each pixel is

67
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essentially a metal-oxide-semiconductor (MOS) capacitor. Figure 4.1 shows

Vg

depletion zone

metal gate

SiO2

p-Type
semiconductor

photon

Figure 4.1: Cross section of a MOS capacitor used as a pixel in a CCD.
A positive voltage Vg, usually about 10 volts, produces a depletion region
in the semiconductor. An incident photon can pass through the thin metal
gate and promote an electron in the valence band of the semiconductor into
the conduction band. These photoelectrons collect under the metal gate.
The MOS capacitor stores a number of electrons equal to the number of
incident photons.

the structure of a MOS capacitor. The bottom layer is usually made of
doped silicone to make it a p-Type semiconductor. A thin insulator, usually
SiO2, is deposited on the silicone substrate. A conducting gate is applied
on top of the insulator. When a positive gate voltage Vg is applied, electron
holes migrate away from the gate forming a depletion region—a region
below the gate depleted of holes.1 The electrons in the depletion region are
trapped in the valence band so they are immobile. However, an incident
photon with energy greater than the bandgap energy of the semiconductor
can interact with a valence electron and promote it to the conduction band.
The newly freed electron will migrate toward the positively biased metal
gate, but the insulator will trap it in the depletion region. The electron is
effectively stored in the pixel. The electrons generated by interaction with
photons are called photoelectrons.

1To those acquainted with solid state physics the concepts of an electron hole, valence,
and conduction bands, etc. will sound familiar. The detailed solid state physics isn’t
that important to our discussion, but if you want to learn more about the physics of
semiconductors see Donald Neamen’s book [11].
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Problem 4.1
The bandgap energy of Si is approximately 1 eV. How does this energy
compare to energy of photons in the visible part of the spectrum?

If enough photoelectrons accumulate in the pixel they will begin to shield
the positive voltage of the gate from newly generated photoelectrons and
the pixel won’t be able to hold any more charge. The maximum number
of electrons that can be stored in a pixel is called the full-well capacity.
The full well capacity is typically between 10 000 and 500 000 electrons.
The number of electrons is directly proportional to the number of incident
photons so CCDs have a linear response until the number of electrons in the
pixel approaches the full well capacity. Figure 4.2 illustrates the response of
a typical CCD. The device begins to depart from linearity and the device
saturates as the number of electrons approaches the full-well capacity.
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Figure 4.2: CCDs typically have a linear response with one photoelectron
generated per photon until the pixel saturates as the MOS capacitor ap-
proaches full-well capacity.

4.2 CCD Readout

In order to take a picture with a CCD we simply place it at the focal plane
of a telescope behind a mechanical shutter. We clear all the charge out of
the pixels and then open the shutter for the desired exposure time. When
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the exposure is done we have stored electronic image. All we have to do now
is to measure the charge in each pixel. Figure 4.3 shows how this is done.
Each column of pixels is called a parallel register. First step in reading out
the charge in the device is to shift all of the charge in the parallel registers
up by one row. The top row is shifted into a special row, called the serial
register. The serial register isn’t exposed to light so it is empty before the
shift. Next, the charge in serial register is shifted to the right. The charge
in the right-most pixel is dumped onto a capacitor. This capacitor is just
a special MOS capacitor and is sometimes called the output node. The
voltage across the output capacitor is then amplified and converted to a
number by an analog-to-digital converter (ADC). The output of the ADC
is stored in a computer. The charge is dumped from the output node and
the charge in the serial register is again shifted to the right with the right-
most pixels charge again dumped onto the output node and measured. The
process is repeated until all of the charge has been read out of the serial
register, then the next row is shifted into the serial register and the process
of reading the serial register is repeated. In the end we have an array of
numbers stored in computer memory with each number proportional to the
number of photons that were collected by each pixel during the exposure.

Exactly how the charge is moved along the parallel and serial registers
depends on the type of CCD, but Figure 4.4 shows a diagram of a few pixels
of a three-phase CCD. The charge in each pixel is confined in the horizontal
direction by permanent barriers called channel stops. The movement of
charge along the parallel registers is controlled by adjusting the voltage
on the gates that span the width of the CCD. For example, if φ2 is set
to some positive potential greater than φ1 and φ3 (see Figure 4.5 at time
t0) photoelectrons will be trapped in the pixel. This is the configuration
of gate voltages used while the shutter is open and the CCD is collecting
photoelectrons in its pixels.

Figure 4.5 shows the sequence of steps by which charge is transferred
from one pixel to the next. The top of the figure shows a cross section of
a few pixels along one of the registers. The bottom of the figure shows the
elections in the potential energy wells defined by setting the gate voltages φ1,
φ2, and φ3. At time t0, φ2 > φ1 = φ3. This is how the gate voltages in the
parallel registers are set during an exposure. Any photoelectrons generated
in the depletion zone under a pixel in the parallel registers collects in the
potential well under the φ2 gate. Suppose a charge QA is trapped in pixel
A and charge QB is trapped in pixel B. The process of shifting the charges
to the right along the register starts at time t1 when the readout electronics
changes the potential on the φ3 gates to match the potential φ2 and the
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(a) (b)

(c)
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parallel 
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output node and amplifier

Figure 4.3: CCD readout process. (a) The CCD just after the shutter
is closed. The number of charges in each pixel in the parallel register is
proportional to the amount of light that was incident on the pixel. (b) The
first step in the readout it to shift the charge in the parallel resisters up
by one row. The charge in the top row is shifted into the serial register.
(c) While the charge in the parallel registers is held in place, the charge in
the serial register is shifted pixel by pixel onto the output node where the
voltage is amplified and measured. (d) After the serial register has been
read, the charge in the parallel registers is shifted up again by one row. The
serial register is again read and the process repeated until the entire CCD’s
charge is readout and recorded.
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c h a n n e l  s t o p s
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Figure 4.4: An enlarged diagram of a few pixels of a three-phase CCD
showing channel stops that define the parallel registers and the gates that
control the movement of charge along the parallel registers. During an
exposure the gate voltages are set to a positive values with φ2 > φ1 = φ2 so
that photoelectrons collect under the φ2 gate.



CHAPTER 4. CHARGE COUPLED DEVICES 73

Pixel A Pixel B
𝜙1𝜙2𝜙3

gate
SiO2

semiconductor

QA

QA

QA

QA

QA

QB

QB

QB

QB

QB

t0

t1

t2

t3

t4

Figure 4.5: The top of the figure shows a cross section of a few pixels along
one of the registers. The curves below the diagram show a sequence of
electron potential energy curves used to transfer the charge to the right
from one pixel to the next.
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charge spreads out under the φ2 and φ3 gates. At time t2, φ2 has changed to
force all the electrons under the φ3 gate. At time t3, the readout electronics
change the potential φ1 to match φ3 and the electrons diffuse under the φ1

gate of the neighboring pixel. At time t4, the process has shifted the charge
QA originally under the φ2 gate of pixel A into pixel B under its φ1 gate. As
the readout electronics continue to cycle the gate voltages the charge moves
from gate to gate along the register.

If the charge in one pixel exceeds the full-well capacity, the charge will
leak over the potential barriers in the parallel register and into the adjacent
pixels. This effect is called blooming shown in the image in Figure 4.6. The
channel stops prevent the charge from leaking along rows so the blooming
only occurs along columns of pixels. Blooming ruins not only the signal in
the saturated pixel, but data along entire columns of the CCD.

Figure 4.6: Image of a star showing blooming.

4.2.1 Charge Transfer Efficiency

Ideally all of the charge should be transfered from pixel to pixel during the
readout. In practice this is impossible. The fraction of electrons that move
from one pixel to the next during the transfer is called the charge-transfer
efficiency (CTE). A CCD with a CTE = 1 is impossible, but modern CCDs
must have CTEs very close to one. For a typical 1024 by 1024 pixel array,
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the pixel furthest from the output node must undergo 1024 transfers down
the parallel register and then another 1024 transfers along the serial register.
This means a total of N = 2048 transfers. The fraction of charge f delivered
to the output node after N transfers is

f = CTEN .

To get 99% of the charge, f = 0.99, from the last pixel of a 1024 by 1024
CCD requires a CTE > 0.999995.

Problem 4.2
The DEIMOS camera on the Keck Telescope uses an array of 16 CCDs.
Each CCD is 2048 by 4096 pixels. What CTE is required to transfer
99.9% of the charge from the last pixel to the output node of the CCDs?

In CCDs made from the MOS capacitors like the one shown in Figure 4.1
the photoelectrons collect and are transferred at the SiO2–semiconductor
interface. This type of CCD is called a surface channel CCD. Surface
channel CCDs tend to have poor CTEs because charges get trapped at the
interface. CCD designers avoid this problem by placing a p–n junction below
the SiO2 insulator. This shifts the depletion zone to the p–n junction and
away from the trapping states at the SiO2–semiconductor interface. CCDs
using this design are called buried-channel devices. All modern CCDs
cameras used by astronomers employ buried-channel CCDs.

4.2.2 Analog to Digital Conversion

The charge on the output node of the CCD is amplified and then converted
to a digital number by an ADC. The number from the ADC is a number
of counts in analog to digital units (ADU) between 0 and the maximum
digital output of the ADC. Most CCD cameras use 16-bit ADCs so the
maximum count is 65 535 = (216 − 1) ADU. The number from the ADC
is proportional to the voltage from the amplifier and hence the number
of electrons on the output node. The gain of the CCD is the number of
electrons that correspond to one ADU.

The gain of a CCD is usually set so that the ADC reaches digital sat-
uration before the pixels exceed their full-well capacity. This avoids the
non-linear part of the response shown in Figure 4.2. The minimum voltage
threshold of the ADC is set below the typical amplifier output voltage. This
is done to make sure that noise added by the amplifier is sampled adequately.
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This offset means that even empty pixels register a few hundred ADU. This
is electronic bias adds signal to the output and must be subtracted out to
recover the original input signal (see Chapter 5).

Problem 4.3
Suppose a CCD camera uses a CCD with a full well capacity of about
100 000 electrons. The CCD is connected to a 16-bit ADC. What is the
approximate gain of the of the system in electrons/ADU?

The read-out electronics actually measures the charge on the output
node twice. First the electronics clear all the charge from the output node,
and reads the signal level. Charge from the next pixel is then dumped onto
the output node and read again. The pixel value stored in memory is
the difference between these to readings. This process is called correlated
double sampling and reduces the noise in the measurement. The process
doesn’t completely eliminate noise though. The typical read noise for
state-of-the-art CCDs is only a few electrons. The read noise increases if
the CCD is read out more rapidly. Most astronomical CCD cameras take
at least 20 or 30 seconds to read out.

4.3 Dark Current

At room temperature thermal agitation will occasionally kick electrons from
the valence band to the condition band. This results in a steady trickle of
charge into each pixel even if the CCD isn’t being exposed to light. This
flow of electrons is called dark current. A Si CCD can have a dark current
of up to 104 electrons/second/pixel at room temperature, but it drops dra-
matically at lower temperatures. By treating the electrons as a free Fermi
gas one can estimate the dark current as

ṅD = AT 3/2e−Eg/2kT , (4.1)

where A is a constant, and Eg is the bandgap energy of the semiconductor
[11]. Most research grade CCD cameras used at large observatories use
liquid nitrogen (LN2) to cool the CCD to about −100◦C. This essentially
eliminates dark current.
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Problem 4.4
Assuming a dark current of 104 electrons/second/pixel at room temper-
ature, estimate the dark current at −100◦C.

The CCD in such a camera is sealed in a vacuum to insulate it from
the atmosphere. The vacuum enclosure prevents frost from forming on the
CCD. The camera housing must also have an insulated reservoir to hold the
LN2. This sort of camera housings is often referred to as a dewar.2

Less expensive CCD cameras us a thermoelectric cooler rather than LN2.
Thermoelectric coolers can typically cool the CCD by about 50◦C below
ambient temperature. This doesn’t completely eliminate dark current, but
does reduce it to a manageable level.

4.4 Quantum Efficiency

The quantum efficiency of a CCD depends on wavelength. If the wavelength
of the incoming light is too long the photons don’t have enough energy to
promote electrons from the valence band to the conduction band. Short
wavelengths reflect off the surface, but photons with wavelengths in the
visible band have a high probability of producing photoelectrons. Figure 4.7
shows quantum efficiency for two typical CCDs used by astronomers.

Most CCDs are frontside illuminated meaning that light enters silicon
through the metal gates as seen shown in Figure 4.1. The metal in the gates
is very thin so most of light passes right through the gate and into the
depletion zone. These CCDs often have maximum quantum efficiencies of
more than 60%. Frontside illuminated devices tend to have poor quantum
efficiency on the blue end of the visible spectrum. Backside illuminated
devices have much better blue sensitivity, but they must be made extremely
thin (10-20 µm) so the light can pass through the silicone substrate into the
depletion zone. Besides being expensive to manufacture, thinning causes
problems in the near infrared part of the spectrum. The wavelength of
infrared light is close enough to the thickness of the CCD that interference
fringes form. The fringing depends on how the CCD is illuminated it is very
difficult to correct for later while processing the images.

2A dewar is actually just a vacuum flask used to store cold or hot liquids. It was
invented by Sir James Dewar in 1892.



CHAPTER 4. CHARGE COUPLED DEVICES 78

300 400 500 600 700 800 900 1000
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

Q
u
a
n
tu

m
 E

ff
ic

ie
n
cy

Backside Illuminated
Frontside Illuminated

Figure 4.7: Quantum efficiency curves for a frontside illuminated and a
backside illuminated CCD. Notice that the backside illuminated device has
better quantum efficiency at short wavelengths.

4.5 Example CCD Cameras

The table below shows the specifications for two astronomical cameras. The
STL-1001E is a commercial camera manufactured by SBIG Astronomical In-
struments (https://www.sbig.com). The NASAcam is a custom-built cam-
era for the 31-inch telescope at Lowell Observatory used by the National Un-
dergraduate Research Observatory (http://www.nuro.nau.edu). The STL-
1001E is thermoelectrically cooled to about 50◦C below the ambient temper-
ature, but even then the dark current is significant. The NASAcam operates
at −110◦C so its dark current is negligibly small.

Supplementary Problems

Problem 4.5 CCDs made of silicon can detect visible light, but the
bandgap energy is too large to large to detect infrared light with wave-
lengths longer than about 1 µm. CCDs used for infrared imaging are often
fabricated using indium antimonide (InSb). The bandgap energy of InSb is
about 0.2 eV. What is the longest wavelength light that could be detected
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Table 4.1: Specifications for two typical CCD cameras used by astronomers

STL-1001E NASAcam

CCD Kodak KAF-1001E Loral 2K×2K
Array size 1024 × 1024 2048 × 2048
Pixel size (µm) 24 × 24 13.5 × 13.5
Full-well capacity (e-) 150 000 125 000
Gain (e-/ADU) 2.2 1.8
Read noise (e-) 17 14
Operating Temp. (◦C) ∼ −30 −110
Dark current (e-/s/pixel) 34 at 0◦C ∼ 0 at −110◦C

by an InSb CCD?

Problem 4.6 The average thermal energy of electrons in a solid is approx-
imately equal to kT . How does this energy compare to the bandgap energy
of Si at room temperature? Given this calculation how do you explain the
fact that room temperature CCDs have significant dark current?

Problem 4.7 CCDs cooled with LN2 are typically cooled to −100◦C, but
thermoelectric coolers can only cool them to about 50◦C below ambient
temperature. Assuming a dark current of 104 electrons/second/pixel at
room temperature, estimate the dark current in a thermoelectrically cooled
CCD if the ambient temperature is 20◦C.

Problem 4.8 Compare the dark current in a Si CCD (Eg ≈ 1 eV) and
an InSb CCD (Eg ≈ 0.2 eV) at the typical operating temperatures of an
LN2 cooled CCD. By how much would the dark current be reduced if it
were cooled with liquid He? The boiling point of liquid He is 4.2 K at one
atmosphere.



Chapter 5

Image Processing

The data from a CCD detector is recorded as two dimensional array of
pixel values. Ideally a digital image would be a perfect record of the light
coming from some astronomical object. Unfortunately, raw CCD images are
far from perfect. They are effected by dark current, noise in the readout
electronics, quantum efficiency that varies across the CCD, and even dust
on the optics. Fortunately, once the pixel values are stored in a computer
we can use image processing software1 to manipulate the digital image to
correct most of these defects.

Before we can begin to process the images we need to see them. The first
part of this chapter discusses how we can display digital images and modify
the display to bring out subtle features that might not be visible otherwise.
The next sections describes how we use image processing software to remove
defects in raw CCD images. Finally, we explore ways to combine images in
order to improve the signal-to-noise ratio, create color images, or create an
image of a large patch of the sky.

5.1 Displaying Images

The pixel values that make up a digital image from a CCD are proportional
to the number of electrons stored in each pixel. In order to create a picture
from the pixel-value array, an image display program must map a pixel
value to a grayscale level or a color. An image displayed using a color
mapping is a false-color image since each color represents a pixel value

1Astronomers have developed a huge number of image processing software packages.
Some of these packages are general and some are very specialized.

80
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Figure 5.1: An R-band image of M51 with different grayscale mappings.
The corresponding grayscale map is shown to the right of each image.
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rather than the true color of the object. Grayscale images assign levels
of gray to pixel values.

Figure 5.1(a) shows an image of the galaxy M51. Figure 5.1(b) shows
the grayscale mapping of pixel values to shades of gray. In this image pixel
values greater than 250 are represents as white and values below 50 are black
with a linear scaling gray levels between 50 and 250. Figure 5.1(c) shows
the same digital image with a different grayscale mapping—pixel values
below 20 are black and those above 150 are black. This mapping brings out
more subtle detail in the spiral arms, but loses detail in the galaxy’s center.
Figure 5.1(d) shows the corresponding grayscale mapping. This mapping
has a larger slope which produces more contrast in the faint spiral arms.
Figure 5.1(e) shows an inverted grayscale map where low pixel values
are mapped to white and high pixel values are mapped to black producing
a negative image. Negative images allow you to see faint detail that
isn’t always apparent in positive images. We can use nonlinear mapping
to bring out faint details, but keep detail in the bright part of the image.
Figure 5.1(g) and (h) show an image with a nonlinear grayscale map. In
this case the grayscale is computed from the logarithm of the pixel values.
This mapping has a large slope for small pixels values allowing you to see
faint details in the spiral arms, but has a small slope for large pixel values
so that you don’t loose detail in the bright galaxy center.

Figure 5.2: False color image of the same digital image shown in grayscale
images in Figure 5.1. The vertical bar on the right shows the color mapping
to pixel values.

Since your eyes are better at distinguishing colors than disguising levels
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of gray, a color mapping will allow you to see subtle features not apparent
in grayscale images. Figure 5.2 shows a false-color image of the same galaxy
as those shown in Figure 5.1. The color mapping is shown to the right of
the image. The faint halo outside of stars surrounding both M51 and it’s
companion galaxy is easily visible in the false-color image, but difficult to
see in the grayscale images.

Problem 5.1
Download the image files from the text’s companion website. Use one
of the image display software packages listed in Appendix ?? to display
the image of M 51 (M51 R p.fits).
(a) Adjust the grayscale to make the galaxy arms clearly visible.
(b) Invert the grayscale to create a negative image.
(c) Display the image with a false-color color map.

Figure 5.3: RGB true-color image of M51 produced by using B, V, and
R-band images.

The human eye has three different kinds of color receptors called cones
each having a different color sensitivity. One cone is most sensitive to blue
light, one is most sensitive to green, and the other is most sensitive to red.
Computer monitors can display display any color that can be seen by humans
by adding together red, green, and blue light. This means that we can create
a so-called true-color image of an astronomical image by combining three
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digital images three digital images—one taken using a red filter, one using
a green filter, and one using a blue filter. Images produced in this way are
called RGB images. Figure 5.3 is an RGB true-color image formed by
assigning an image taken with a B-band filter to blue, one with a V-band
filter to green, and one with an R-band filter to red. This approximates
what might be seen by a human eye, if it were sensitive enough. Of course,
the color assignment is arbitrary. One could also assign the V-band to blue,
the R-band to green, and the I-band to red. This would be a false-color
image, but we could see how the infrared emission compares to the other
two bands.

5.2 Image Arithmetic

A digital image is just an array of numbers. Each pixel value depends on not
only the number of photons that strike the pixel, but also things like dark
current, electronic offset, and CCD noise. We can modify the original image
to more closely represent the photon flux by modifying each pixel value in
the array.

Before we discuss how to correct and image, let’s develop some notation
and conventions so we can represent doing mathematical operations on dig-
ital images. Suppose we have a digital image that is Nx by Ny pixels in
size. The image is just an array of pixel values Sxy where 1 ≤ x ≤ Nx and
1 ≤ y ≤ Ny. The complete image is just a giant matrix S. We do can do
image arithmetic element by element. Adding two images A and B yields
another image C and is represented as

C = A + B

and means that Cxy = Axy +Bxy for all 1 ≤ x ≤ Nx and 1 ≤ y ≤ Ny. This
is just how we would treat an ordinary matrix. Just like ordinary matrices
with can subtract two images or add, subtract, multiply and divide images
by a constant. The only difference between image arithmetic and matrix
arithmetic is multiplication and division. When working with digital images
these operations proceed element by element. If C is the product of A and
B then

C = A ∗B

means Cxy = AxyBxy for all 1 ≤ x ≤ Nx and 1 ≤ y ≤ Ny. We use the
‘∗’ operator to distinguish image multiplication from matrix multiplication.
We define image division in the same way,

C = A/B
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means Cxy = Axy/Bxy for all 1 ≤ x ≤ Nx and 1 ≤ y ≤ Ny.
2

We can go further to define any mathematical operation on an image to
be done element by element:

C = log(A) ∗B

gives Cxy = log(Axy)Bxy for all 1 ≤ x ≤ Nx and 1 ≤ y ≤ Ny. We can also
define operations on groups of images. For example,

S = median(A1,A2,A3,A4) = median(Ai)

gives the image S in which in each pixel value is the median of the values of
the corresponding pixels in A1,A2,A3, and A4.

Problem 5.2
The FITS files gal ref p.fits and gal new p.fits are two artificial
images of an elliptical galaxy. Write a program or use some image pro-
cessing software to subtract gal ref p.fits from gal new p.fits and
display the result. Do you see anything unusual in the difference image?

Problem 5.3
Images stars01 p.fits, stars02 p.fits, and stars03 p.fits are
three images of a cluster of five stars. Write a program or use some
image processing software to take the mean of these three images. Dis-
play the result. How does it compare to the original images? Note that
there is a slight misalignment between these three images. We’ll learn
how to align images later in the chapter.

5.3 CCD Data Correction

Below saturation CCDs have a linear response. That means that if R is the
raw digital image from CCD, then

R = E ∗ S + B, (5.1)

where S is the underlying perfect image. You can think of E as a efficiency
factor for each pixel. E is a multiplicative factor for each pixel that accounts

2We can use the ’/’ symbol for image division without confusion since there’s no con-
ventional definition for matrix division.
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for pixel to pixel variations in the response of the CCD. It accounts for pixel-
to-pixel quantum efficiency variations, dust or fingerprints on the optics or
filters, and optical vignetting.3 You can think of E as a collection of pixel
efficiency factors. The background image B is signal added to the perfect
image by electronic bias, dark current, cosmic rays, and any other signal
that doesn’t come from an astronomical source.

We can recover the original image by doing a little image arithmetic on
the output image,

S =
R−B

E
. (5.2)

Of course this assumes we have some way to estimate the background image,
B and the efficiency image E.

5.3.1 Background Image

There are three primary sources of background signal: electronic bias, dark
current, and cosmic rays. Cosmic rays are high energy particles that “kick”
elections into to conduction band as they pass through the CCD. Cosmic
rays only effect at most a few pixels and aren’t generally a problem. One can
eliminate them by averaging the signal over pixels surrounding the cosmic
ray hit, but this is only a cosmetic correction. Any data effected by cosmic
rays is lost. Cosmic rays can’t be corrected by subtracting a background
image. We can, however, estimate the electronic bias and dark current
contributions to the background image.

Bias Frames

Electronic bias is purposely added to images so that the ADC functions
properly. We can estimate the bias by clearing the CCD and immediately
reading again with zero exposure time. In this case the input signal S = 0
and the dark current signal are both zero. Frames taken in this way are
called bias frames or zero frame. There is noise in each bias frame so
we typically take about ten bias frames and average them together to get a
master bias image. If the CCD’s dark current is negligible then the master
bias frame a good estimate of the background.

Some CCDs cameras estimate the bias by overscanning the horizontal
register. The CCD electronics overscan the horizontal register by continuing

3Optical vignetting is a reduction of an image’s brightness at the edge compared to the
image center. It is often cause by misaligned filters or optical elements.
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to read the output gate after the last pixel of charge has been read. Over-
scanning results in an image that has more pixels in the horizontal direction
than the physical size of the image. The overscanned pixels are effectively
a mini bias image. If you are processing images from an overscanned CCD,
you can use the overscanned pixels to estimate the bias then trim the over-
scanned region from each image. To be safe you should always create a
master bias frame even if you are using an overscanning CCD.

Dark Frames

Dark current causes charge to build in each pixel even if it isn’t exposed to
light. Dark current varies from pixel to pixel. We can estimate the dark
current by taking a dark frame, an image produced by clearing the CCD
then waiting a period of time before reading the CCD. We are essentially
taking an image without opening the shutter. If dark current is a problem we
usually take dark frame with an “exposure time” equal to or longer than the
images we plan to take. The amount of charge built up is governed by the
Poisson distribution so there is some noise in every dark frame. We reduce
the noise by creating a master dark current image D by taking a set of N
dark frames di, subtracting the bias, dividing each by the corresponding
dark exposure time td,i, and then averaging or taking the median of the
images:

D = median

(
d1 − Z

td,1
,
d2 − Z

td,2
, ...

dN − Z

td,N

)
, (5.3)

where Z is the master bias frame.
Assuming that thermal charge builds linearly with time, we can estimate

the dark current contribution to the background in any image by multiplying
D by that image’s exposure time t. The total background image is then

B = Dt+ Z. (5.4)

Problem 5.4
The ten images bias01.fits through bias10.fits are raw bias frames.
Create a master bias image by averaging these ten images.

5.3.2 Efficiency Images

We estimate the efficiency image by exposing the CCD to something that
is uniformly illuminated. Uniform illumination means that the pixel values
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in S are all the same. Uniformly illuminated images are called flat-field
images or more simply flats. Using equation (5.1) we see that

E = (R−B)/S, (5.5)

where S is the pixel value of all the pixels in S. We can get B from the
process outlined in the last section. R is the output image, but we don’t
generally know S. Not knowing S isn’t crucial to getting the relative effi-
ciencies of the pixels. We can set S to be almost anything and the resulting
image will be proportional to E. One way to estimate S is to set it equal to
the average pixel value in R−B,

S = S̄ ≡
Nx∑
x=1

Ny∑
y=1

Rxy −Bxy
NxNy

.

In practice we typically set S equal to the median pixel value S̃ of R −B.
The median is less sensitive to outliers that might be produced by cosmic
rays or bad pixels. Setting S as either the mean or median pixel value
ensures that the typical pixel values in the resulting efficiency image are
close to one.

The quantum efficiency of a CCD is wavelength dependent and varies
from pixel to pixel so you must make an efficiency image for each filter. As-
tronomers usually take about five flat-field images in each filter and combine
them to reduce the noise in the final efficiency map. How they combine the
images depends on how the images were taken.

Twilight flats

By far the most common way to create flat-field images is to take images
of the twilight sky. The twilight sky isn’t perfectly uniform, but over the
small field of view of most telescopes its adequately uniform near the zenith.
One problem with this technique is that the sun is either setting or rising
while you are taking images. This means that you must scale the images
by their median pixel-value before you combine them. Another problem
is that each flat probably has a different exposure time so each will have a
different amount of thermal charge. The image processing for flats is getting
complicated so lets outline an algorithm. We’ll assume we have already
created a dark current frame D and a master bias frame Z. Suppose we
have N raw flat-field frames fi with the corresponding exposure times ti.
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1. Subtract the background from each raw flat to get the background-
subtracted flats Fi,

Fi = fi −Dti − Z.

2. Compute the median pixel value F̃i of each flat field image Fi.

3. Compute the efficiency frame or the master flat-field image by taking
the median of the normalized flats,

E = median

(
F1

F̃1

,
F2

F̃2

, ...
FN

F̃N

)
.

Problem 5.5
The images flat01.fits through flat05.fits are flat field images.

Use them to produce a singe efficiency image. Don’t forget to subtract
the background using the master bias image created in Problem 5.4.

Dark-sky flats

The night sky is perfectly uniform directly overhead, but doesn’t emit much
like and the sky is filled with stars. If the exposure time is long enjoy to
get a significant signal from the sky the image will also have stars. One
way around this problem is to take a large number of deep sky images, but
shift the telescope between each image. When you take the median of all
these images, the bright pixels containing stars won’t contaminate the final
efficiency map.

Because of the long exposure times required to get good dark-sky flats
this technique is really only useful if your observing program already includes
taking long time exposures of different regions of the sky. If you place the
object or objects of interest in different locations on the image you can
take the median of these images to create the efficiency map. You can use
the same processing algorithm for processing dark-sky flats as outlined for
twilight flats except you need to include many more images to eliminate the
effects of stars and get enough signal to eliminate noise in the final efficiency
frame.

Dome flats

Another way to produced a flat field is to point the telescope at a uniformly
illuminated a screen inside the dome. One advantage of this technique is
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that the astronomer controls the illumination so all of the images taken with
the same exposure time should yield the same signal level. You can take
dome flats during the day. One problem with dome flats is that it is very
difficult to uniformly illuminate a the screen. If the weather is good, twilight
sky flats are usually a better option.

5.3.3 Processing Image Data

Once you have created all of the calibration images—the master bias Z, dark
current D, and efficiency E frames—you can correct raw CCD images Ri to
produce corrected images Si,

Si =
Ri −Dti − Z

E
, (5.6)

where ti is the exposure time for Ri. If you then multiply Si by the CCD gain
you should have an image where the pixel values are equal to the number of
photoelectrons.

Figure 5.4 shows a master bias frame (a), an R-band flat-field image
(b), a raw galaxy image (c) and a final image (d) corrected using equation
(5.6). The image was taken with a CCD camera with negligible dark current
so D = 0. The final image doesn’t look much different than the original
image, but the actual pixel values have changed. In order to get accurate
photometry you will need to use the final processed image.

Problem 5.6
The image stars01.fits is a raw CCD image of a star field. Use the
background image created in Problem 5.4 and the flat field efficiency
image created in Problem 5.5 to correct this image.

Suppose you have just completed a night’s observing run, taken a well
deserved rest, and now you want to process your data. You took a set of bias
frames z1, z2, ..., zNz , and a set of dark frames d1,d2, ...,dNd

. You needed
data in the B-band and V-band so you took twilight flats using both filters,
fB1 , f

B
2 , ..., f

B
Nf

and fV1 , f
V
2 , ..., f

V
Nf

. Let’s sumarize how you might go about

processing your raw data files taken with B filter RB
1 ,R

B
2 , ...,R

B
NB

and the

V filter RV
1 ,R

V
2 , ...,R

V
NV

.

1. Create a master bias frame Z,

Z = average (z1, z2, ..., zNz) .
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(a) (b)

(c) (d)

Figure 5.4: Images used to correct an image taken with a CCD. The dark
current for this camera is negligible so no dark frame was needed. (a) Master
bias frame. (b) R-band flat-field. (c) Raw R-band image of the galaxy M51.
(d) Corrected galaxy image.

2. Create a dark current frame D,

D = median

(
d1 − Z

td,1
,
d2 − Z

td,2
, ...,

dN − Z

td,N

)
.

3. Create a master flat-field frame for each filter,

EB = median

FB
1

F̃B1

,
FB
2

F̃B2

, ...,
FB
Nf

F̃BNf

 ,
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and

EV = median

FV
1

F̃ V1

,
FV
2

F̃ V2

, ...,
FV
Nf

F̃ VNf

 ,

where FB
i = fBi −D tBf,i−Z, and FV

i = fVi −D tBf,i−Z. The times tBf,i
and tVf,i are the flat-field exposure times.

4. Process the raw images using the master flats to get the final corrected
images,

SB
i =

RB
i −D tBi − Z

EB

and

SV
i =

RV
i −D tVi − Z

EV
.

Sometimes you might continue the processing to eliminate cosmic ray hits,
or bad pixels in the array. For for some detectors, not typically CCDs,
you might have to correct the data for the nonlinear gain of the device.
Some CCD cameras produce images with an overscan region in which case
you would have to add another step to correct for the overscan and trim
the images. For CCD cameras that have negligible dark current you can
eliminate the dark current processing steps.

You could write your own programs to do all the image processing and
some astronomers do, but usually they use an image processing program that
is designed specifically for dealing with astronomical images. Astronomical
image processing programs like IRAF will process batches of images to cre-
ate master bias frames, dark current frames, and efficiency maps using a
few simple commands.4 Sophisticated image processing programs are quite
flexible and will allow you to process the images any way you want. For
example, if you might found that the raw bias frames were contaminated by
cosmic ray hits you might choose to take the median of the images rather
than the average to create the master bias frame.

Problem 5.7
Use the master bias image of Problem 5.4 and the flat field efficiency im-
age created in Problem 5.5 to correct the images stars01.fits through
stars05.fits, gal ref.fits, and gal new.fits. You may want to

4If you configure IRAF and the image files properly, then you can do the four processing
steps outlined above with just four commands.
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write a program that reads in a list of file names and corrects all the
images in the list. This will be handy later on when you need to process
a large number of images.

Supplementary Problems

Problem 5.8 How long an exposure time is needed to make CCD noise
negligible.

Problem 5.9 Download some FITS format images from the Space Tele-
scope website https://www.spacetelescope.org/projects/fits liberator/datasets archives/.
Display one of your choice with different grayscale settings and color maps.



Chapter 6

Photometry

The science of measuring the intensity of light is called photometry. The first
astronomers to quantify the brightness of stars used only their eyes to esti-
mate brightness. A modern photometric measurement of a celestial object
is a quantification of flux or photon count rate. In Chapter 3 we described
how an object’s magnitude is related to flux and photon count rate. We also
saw that the measurement depends on the characteristics of the telescope,
the camera, and even the atmosphere. Astronomers have devised standard
photometric systems in order to characterize these effects. Astronomers can
compare measurements from different telescopes and instruments by using
filters to replicate the response functions of standard systems. This chapter
describes some of the most commonly used standard systems. We will then
explore techniques for extracting photon count rates from digitized images.
We will also learn how to correct for atmospheric extinction. Finally we
will learn some techniques for transforming measurements taking using a
particular instrument to a standard photometric system.

6.1 Standard Photometric Systems

There are more than a hundred different photometric systems in use today.
Many of these systems were devised for specific purposes. Some have wide
passbands (30 nm or wider) and some are quite narrow for measuring par-
ticular spectral lines. In Chapter 3 we discussed the one of the most widely
used systems, the Johnson-Cousins UBVRI system. Another one of the most
commonly used systems is the ugriz system developed for the Sloan Digital
Sky Survey is discussed below. See Bessell (2005)[1] for a review several
commonly used photometric systems.

94
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6.1.1 The Johnson–Cousins UBVRI System

The first well characterized standard system was established by Johnson and
Morgan in 1953[9]. The system consisted of just three passbands, U, B, and
V. The system was later extended into the red (R) and infrared (I) parts of
the spectrum. Table 3.1 is reproduced in Table 3.1 below. It lists the central
wavelength (λ0), approximate filter bandwidth (∆λ) and the approximate
flux (Fλ) for a zero magnitude star for all the filters in the UBVRI System.

R and I are red and near-infrared filters respectively. The rest of the
filters are all in the infrared part of the spectrum.

Table 6.1: Johnson–Cousins UBVRI system response function effective
wavelengths and widths. (Data from Bessell[1].)

Bandpass U B V R I
λeff (nm) 366 436 545 641 798
∆λ (nm) 65 89 84 158 154

The UBVRI photometric system was developed before CCDs were used
for photometry. This system was developed using a photomultiplier detec-
tors and specific filters. If we want make measurements with a CCD, we
have to make sure that the response of our the CCD mimics the Johnson–
Cousins system or that we’re able to transform our magnitudes to standard
UBVRI magnitudes. This can be a difficult since the passbands were defined
by a combination of the sensitivity of the photomultiplier, the filters, and
for the U filter the atmosphere.

Most CCDs are red sensitive and have poor U response so most CCD
observations are done with B, V, R, and I filters. Figure 6.1 shows the
normalized response curves for the UBVRI system. To use the BVRI system,
the CCD/filter combination have to be chosen to match the Johnson-Cousins
photomultiplier/filter systems as closely as possible.

In order to calibrate our system, we need a set of standard stars for
which the colors and magnitudes have already been measure. Originally 290
stars defined the UBV system. Most of these stars are brighter than sixth
magnitude. These are too bright for most CCD/telescope combinations.
Since then a number of observers have carefully calibrated dimmer stars
specifically for use with CCD cameras.
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Figure 6.1: Normalized response R(λ) for the UBVRI standard photometric
system.



CHAPTER 6. PHOTOMETRY 97

6.1.2 Magnitude Zero Points

Catalogs of standard stars list the magnitudes and colors of all the stan-
dard stars. However, there is some arbitrariness in the magnitude system.
At some point we have to define the zero point of the system. In other
words, what flux defines a star with zero magnitude and what ratio of fluxes
define the color indices. Tying fluxes to magnitudes turns out to be quite
complicated, but one way around this problem is to define some star as the
primary standard star and assign it a magnitude and color indices of zero.
This is precisely what was done in the 1950s. The chosen star was Vega. It
was chosen to have V = 0 as well as B − V = 0 etc. Vega is an A0 star,
so other A0 stars scattered around the sky were chosen as secondary stan-
dards. However, Vega probably wasn’t the best choice—it’s a variable star
and has excess IR radiation due to a circumstellar dust shell or ring. The
modern zero point definitions are based on a combination of modeling and
spectrophotometric observations. In the modern system Vega has V = 0.03.

One difficulty with a zero point based on a particular class of star is
that the zero point then depends on the somewhat complicated spectrum of
the zero point star. This can complicate comparing the magnitudes of stars
with vastly different spectra. One way around this system is to define the
zero point spectrum in a different way. One such zero point system is the
AB magnitude system. The magnitudes in this system are defined so that
when monochromatic flux (flux per unit frequency), Fν is measured in erg
sec−1 cm−2 Hz−1, mAB(ν) = −2.5 log(Fν) − 48.60. In this system an, an
object with constant Fν has zero color. Fortunately, the conversion between
these two zero point systems is relatively small. The conversions are

V = V (AB) + 0.044, (6.1)

B = B(AB) + 0.163, (6.2)

R = R(AB) + 0.055, (6.3)

I = I(AB) + 0.309. (6.4)

The Hubble Space Telescope Science Institute has adopted a similar zero
point system in which constant flux per unit wavelength interval has zero
color.

6.1.3 The Sloan Digital Sky Survey ugriz System

The Sloan Digital Sky Survey (SDSS) is a project to produce images and
spectra of a large fraction of the sky using a 2.5-m telescope at the Apache
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Point Observatory in New Mexico. The ugriz system was developed for the
CCD imagers for the SDSS. Given that the SDSS has measured photometry
of nearly 200 million objects the ugriz system has become the standard
photometry system. Table 6.2 shows a comparison of UBVRI system and
the ugriz system. Figure 6.2 shows the bandpasses of the filters in the ugriz
system.

Table 6.2: Comparison of the UBVRI and ugriz system response function
effective wavelengths (nm) and widths (nm). Data from Bessell[1].

UBVRI ugriz

λeff ∆λ λeff ∆λ

U 366.3 65 u′ 359.6 57
B 436.1 89 g′ 463.9 128
V 544.8 84 r′ 612.2 115
R 640.7 158 i′ 743.9 123
I 798.0 154 z′ 889.6 107

6.2 Photometric Data Reduction

The count rate measured of an object measured on a CCD image is directly
related to the object’s magnitude in a standard photometric system corre-
sponding to the filter used. The overall data reduction procedures relating
the photon count rate to the standard magnitude described below apply to
all optical and near infrared photometry using all sorts of detectors (photo-
multipliers to CCDs to InSb infrared detectors). The details of the reduction
depend on the instrument used and the wavelength band of the observations.

6.2.1 Converting Photon Counts to Instrumental Magnitudes

1. Determine the Photon Count Rate

The details of this step of the reduction depends on the instrument
used for the observations. For example, if using a photomultiplier, a
correction for the dead-time of the tube might be applied and the sky
and dark-current background must be subtracted. The final result of
this step in the reduction should be either the photon count rate or
some number proportional to it.
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Figure 6.2: The u′, g′, r′, i′, and z′ bandpasses for a typical CCD. The
curves represent the expected total quantum efficiencies of the camera plus
telescope on the sky. Solid curves indicate the response function without
atmospheric extinction; dot-dashed curves includes some atmospheric ex-
tinction. From Smith et al. (2002)[13].
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2. Convert Rates to Instrumental Magnitudes

Use the equation m = −2.5 log(r) + ξ, where m is the instrumental
magnitude, r is the count rate, and ξ is an arbitrary constant often
set to 0. For the UBV system,

u = −2.5 log ru + ξu, (6.5)

b = −2.5 log rb + ξb, (6.6)

v = −2.5 log rv + ξv, (6.7)

where the lower case letters u, b, and v are the instrumental magni-
tudes. Lower case letters are traditionally used to denote instrumental
magnitudes and upper case letters U , B, and V are used to denote cal-
ibrated standard magnitudes.

6.2.2 Correct for Atmospheric Extinction

If the observations are planned so that both the standard stars and the object
of interest are near each other and the zenith angle during observations is
small, no extinction correction may be required. If an extinction correction
is required, at least one star should be observed at many different zenith
angles (air masses). The first order extinction coefficients kv, kb, and ku are
then determined by plotting v, b, and u respectively vs. the airmass X (see
Figure 6.3). A linear least squares fit gives the extinction coefficients (the
slopes of the fit lines). The extinction corrected instrumental magnitudes
are then calculated from the equations,

u0 = u− kuX, (6.8)

b0 = b− kbX, (6.9)

v0 = v − kvX, (6.10)

where the 0 subscript indicates the corrected magnitude and X is the air-
mass. Extinction over a single filter bandwidth is actually color dependent,
however, and for a more precise calculation we could correct for this by let-
ting ku = k′u + k′′u(b0− v0), kb = k′b + k”b(b0− v0), and kv = k′v + k′′v (b0− v0).

Note that if necessary the airmass can be computed from the zenith
angle, z, using the equation

X = sec z − 0.0018167(sec z − 1)− 0.002875(sec z − 1)2 −
0.0008083(sec z − 1)3 ≈ sec z. (6.11)

The approximation X ≈ sec z is a very good approximation for small zenith
angles and is usually satisfactory.
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Figure 6.3: A plot of the V-band instrumental magnitude, v, vs. airmass X.

6.2.3 Determine the Transformation Coefficients

Observations of a standard star are needed to transform the extinction-
corrected instrumental magnitudes into a standard photometric system. To
first order, the transformations are

V = v0 + (VS − v0S), (6.12)

B − V = (b0 − v0) + [(B − V )S − (b0S − v0S)] , (6.13)

U −B = (u0 − b0) + [(U −B)S − (u0S − b0S)] , (6.14)

where the S subscript indicates the values for the standard star. Notice that
here we are computing the color indices B−V and U −B rather than U , B,
and V independently. This is typically the way photometric data for stars
are presented. The values u, b, v, uS , bS , and vS are all extinction corrected
instrumental magnitudes that are determined from the observations. VS ,
(B − V )S , and (U − B)S are the accepted values for the magnitudes and
color indices of the standard star. You can look these up in a standard
reference such as the Astronomical Almanac.

The above equations are exact if the response of the instrument used
to perform the measurements is identical to the Johnson or Cousins UBV
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Figure 6.4: A plot of V − v0 vs. the B − V color index. To first order this
should be a linear relation with a slope equal to ε.

system. Even if the instrument response isn’t ideal these equations may
be satisfactory. However, if very accurate photometry is needed, it may be
necessary to correct for the instrument’s non-ideal response. In this case,
the equations for transforming from the extinction corrected instrumental
magnitudes to the standard UBV system are

(B − V ) = µ(b0 − v0) + Cbv, (6.15)

V = v0 + ε(B − V ) + Cv, (6.16)

(U −B) = ψ(u0 − b0) + Cub. (6.17)

Observations of standard stars are used to determine the transformation
coefficients ε, µ, ψ, and the Cs. To determine epsilon, plot V − v0 vs. B−V
for many standard stars of different colors. The slope of the line gives epsilon
and the intercept gives Cv (see Figure 6.4).

More care must be taken to determine µ. This number is very close to
one so if (B − V ) − (b0 − v0) is plotted against (B − V ) (see Figure 6.5)
then the slope, a, of the resulting curve can be used to determine µ more
accurately. A little algebra gives the relationship between the slope, a, the
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Figure 6.5: A plot used to determine the first order transformation coefficient
µ.

intercept, c, and the constants mu and Cbv.

µ =
1

1− a
, (6.18)

Cbv =
c

1− a
. (6.19)

The transformation coefficients for the other color indices (U −B for exam-
ple) are determined using the same procedure.

It is not necessary to determine all of the transformation coefficients each
night. The coefficients ε, µ, and ψ depend only on the telescope-detector
system and usually quite stable. The constants Cv, Cbv, and Cub change
somewhat from night to night but can be determined by observing one or
two standards.

Compute Calibrated Magnitudes

The final step is to calculate the magnitudes and color indices using the
transformation equations above. If the system is close to a standard UBV
system or we don’t require too much accuracy, then we can use Equations
6.12, 6.13, and 6.14. If we want to be precise we have to use Equations 6.16,
6.15, and 6.17.
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6.3 Differential Photometry

In order to calculate standard magnitudes (and in particular determine the
extinction coefficients for a particular night) as described in the last section,
the night must be ‘’photometric”. In other words, the dimming of an object
should only be due to its changing airmass and not due to clouds moving
through or the transparency of the atmosphere changing. Is it possible to
do photometry on an object on non-photometric nights and get meaningful
results? The answer is yes, and the technique is called differential photom-
etry.

If you were to compare the brightness of an object to another at the
same airmass (to eliminate the need to correct for atmospheric extinction)
and if both were observed at the same time and close together in the sky
(to eliminate the need to correct for changing atmospheric transparency due
to clouds), the difference in the instrumental magnitudes of the two objects
would remain constant. The fact that the airmass is changing or that clouds
are moving through becomes irrelevant to this differential magnitude.

Differential photometry is essentially measuring the differential instru-
mental magnitudes between objects on the same CCD image. If these objects
are on the same CCD image, due to the small field of view the objects would
essentially have the same airmass and we would be looking through the same
portion of the atmosphere during the same time interval (thus satisfying the
above stated criteria).

We can use differential photometry to monitor a variable star’s brightness
as a function of time (given there is a comparison star in the same field of
view).

Is it possible to convert these differential instrumental magnitudes to a
standard system? The answer is yes, if the comparison stars have known
standard magnitudes. Just use the technique described in the last section,
but skip the extinction correction step.



Appendix A

Spherical Trigonometry

The shortest distance between any two points on the surface of a sphere
can be connected by a great circle. A great circle is the intersection of
the surface of a sphere and a plane that also passes through the center of
the sphere. The intersection of three great circles on the surface of a sphere
forms a spherical triangle (see Figure A.1). The law of cosines for

Figure A.1: A spherical triangle is formed by three great circles. The angles
a, b, c, A,B, and C are related by the law of sines and the law of cosines.

spherical triangles can be written in two ways,

cos a = cos b cos c+ sin b sin c cosA (A.1)
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or
cosA = cosB cosC + sinB sinC cos a. (A.2)

The law of sines for spherical triangles is

sin a

sinA
=

sin b

sinB
=

sin c

sinC
. (A.3)

For derivations of these equations and a complete description of spherical
trigonometry see Smart [12, Chapter 1].



Appendix B

Uncertainty

B.1 What is Uncertainty?

Experimental measurements never yield exact results. For example, suppose
you were asked you to measure the length of a small table with a meter stick.
You would carefully align one end of the meter stick with one edge of the
table then look at the other edge to read off the length. You read off the
length by looking at the marks on the meter stick and determining which one
lines up with the edge of the table. Is there uncertainty in the measurement?
Yes, because you can’t read the scale more finely than about a millimeter.
The smallest marks on a meter stick are usually one mm apart. The best
you could probably do would be to say that the length of the table is in
some range.

Suppose you make the measurement described above and find the length
to be between 61.2 and 61.4 cm. Your instructor would like you to write a
short lab report on your measurement. (I know, instructors ask you to do
some weird things.) How would you report the length? You could say “the
length of the table is between 61.2 and 61.4 cm.” This would be correct,
but scientists have a convention for specifying the results of a measurement;
we specify a best estimate plus or minus an uncertainty. In this case, the
best estimate of the length would be the value in the middle of the range or
61.3 cm. The uncertainty specifies how much bigger or smaller the length
could be or in this case 0.1 cm. In this example, the range 61.2 to 61.4 cm
should be specified as 61.3±0.1cm.1 In general,the result of a measurement

1The ± symbol is read as “plus or minus”.
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of some quantity x is stated as

(measured value of x) = xbest ± δx, (B.1)

where xbest is the best estimate of x and δx is the uncertainty in the estimate.
We’ll learn some sophisticated ways of computing xbest and δx later, but if
our measurement of x is between xmax and xmin, then

xbest ≈
xmax + xmin

2
, (B.2)

and

δx ≈ xmax − xmin

2
(B.3)

give crude estimates.
Knowing the uncertainty is essential to testing scientific theories. For

example, suppose a new theory of stellar evolution predicts the mass of a
star in a binary system is 2.1 M�. Suppose you measure the mass and find
it to be 1.7 M�. Do these numbers agree? It depends on the uncertainty.
If the uncertainty in our measurement was ±0.5 M� then our measurement
is consistent with the theory, but if the uncertainty was ±0.1 M� we would
have to conclude that the theory is inconsistent with the measurement. A
measurement without an estimated uncertainty usually isn’t very useful.
Astronomers often spend as much or more time determining the uncertainty
in a measurement as they do determining the result of the measurement.

B.2 Reporting Uncertainties

Let’s explore some conventions scientists use to report their result. Uncer-
tainty estimates are, after all, just estimates so they should not be stated
with too much precision. In our table example, it wouldn’t make any sense
to quote our measured length as 61.3 ± 0.1239856 cm. It simply isn’t pos-
sible to know the uncertainty to seven significant figures. Uncertainties are
usually quoted to one or two significant figures. In this book we will use the
following convention:

Convention for Reporting Uncertainies

If the most significant digit in the uncertainty is a ‘1’ we will round the
uncertainty to two significant figures, otherwise we will round uncertain-
ties to one significant figure.
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According to this convention the uncertainty 0.1239856 would be rounded
to 0.12. If the computed uncertainty had turned out to be 0.85438, it would
be rounded to 0.9.

Once the uncertainty has been rounded, we must also consider the num-
ber of significant figures to keep in the best estimate. A statement like

measured speed = 6056.32± 3 m/s

is obviously ridiculous. The uncertainty of 3 m/s means that the digit ’6’
in the fourth place of 6056.32 might really be as small as ’3’ or as large as
’9’. Clearly the trailing digits ’.32’ have no significance at all, and should be
rounded off. The proper way to state the result is

measured speed = 6056± 3 m/s.

The procedure for determining how to report a measured value with its
uncertainty is to first use the convention above to determine the number
of significant figures to keep in the uncertainty and then use the following
convention to decide how to round the measured value.

Convention for Reporting a Measured Value

The least significant figure in any measured value should be of the same
order of magnitude (in the same decimal position) as the uncertainty.

For example, suppose you have three measured values of a time inter-
val: 2.335, 2.437, and 2.270 seconds. Using your calculator to compute
the uncertainty according to equation (B.3) you would get 0.0835. Using
the convention for rounding uncertainties gives 0.08. Using your calculator
again to compute the average of the three values would give 2.347333. Using
the convention for rounding measured values to match the uncertainty gives
2.35. You would report your best estimate of the time interval as 2.35±0.08
seconds.

There are two other things to keep in mind when reporting measured
values. The first is that since the uncertainty and the best estimate both
have the same units it is clearer to write the result as 2.35 ± 0.08 seconds
than 2.35 seconds ±0.08 seconds. Second, we will often measure numbers
that are reported in scientific notation. Suppose we measured a distance to
be 1.61 × 105 AU with an uncertainty of 5 × 103 AU. The clearest way to
report this is (1.61± .05)× 105 AU rather than 1.61× 105 ± 5× 103 AU.
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Problem B.1
The table below is a collection of measurements and estimated uncer-
tainties. Write them in the proper format.

Measurement Uncertainty

35.9824 m/s 0.113 m/s
1.022089× 1019 kg 6.321× 1015 kg

0.0012 A 0.1935 A
1235 AU 211 km

B.3 Estimating Uncertainties

There are an huge number of different ways to make a measurement which
means there are just as many different ways to estimate the uncertainty in
the measurement. In fact you can often estimate the uncertainty in a number
of different ways and it is common when making a complex measurement
to use several different methods estimate the uncertainty in order to cross
check the estimates.

In the example of measuring the length of a table we got our uncertainty
estimate by simply estimating the accuracy to which we thought we could
read the meter stick. This is a quick and simple way to get an estimate.
Estimates of this kind are somewhat subjective, but sometimes it is the best
that you can do. A better, but more time consuming technique, would be to
have several different experimenters make the measurement then combine
their results somehow. We’ll discuss exactly how we might combine their
results in Section B.5.

Most modern lab equipment is digital. A modern voltmeter is a good
example. Suppose we used a voltmeter to measure the voltage across a
battery and the digital display read 1.23 volts. What is the uncertainty in
this measurement. If we assume the voltage of the battery doesn’t change
during our measurement and that the voltmeter is calibrated properly, the
accuracy of the measurement is given by the accuracy of the display. The
display would read the same if the actual voltage where anywhere in the
range from 1.225 to 1.234 volts. Using the equation (B.2) for the best
estimate, we get 1.230 volts and using equation (B.3) for the uncertainty
gives 0.005 volts. Our best estimate of the battery voltage is then 1.230 ±
0.005 volts. In other words, when reading a digital display the uncertainty
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is 1/2 the least significant digit that can be displayed.

B.4 Systematic versus Random Errors

In our voltmeter example we assumed that the voltmeter was properly cal-
ibrated. If it wasn’t, then our best estimate wouldn’t be correct. A cal-
ibration error like this is an example of a systematic error. Systematic
errors are errors associated with a flaw in the equipment or in the design
of the experiment. Systematic errors cannot be estimated by repeating the
experiment with the same equipment. In the battery example, the best way
to deal with the systematic error would be to recalibrate the voltmeter. If
this isn’t possible, then we would have to somehow make an estimate of
the possible size of the systematic error and include it in our uncertainty
estimate. Systematic errors are insidious because the experimenter usually
doesn’t know they are present. If they did they would correct the flaw before
doing the experiment.

Hubble’s original estimate of the Hubble constant was 500 km s−1Mpc−1.
This is about seven times larger than the currently accepted value of about
70 km s−1Mpc−1. This huge discrepancy was due to a systematic error
on Hubble’s part. He determined the distances to galaxies by identifying
Cepheid variable stars, but he misidentified the population of Cepheids and
hence got the distances wrong. He identified the linear relationship between
distance and velocity, but his actual number for the proportionality was
incorrect. This is a classic example of an unidentified systematic error.

Many measurements involve uncertainties that can’t be estimated by
reading a scale or a digital display. For example, if I measure a time interval
using a digital stopwatch, the main source of uncertainty isn’t usually from
the accuracy of stopwatch display, but is from the variability of my reaction
time. A good way to estimate the uncertainty in this case would be to make
repeated measurements. Errors that can be reliably estimated by repeating
measurements are called random errors.

B.5 Statistical Analysis of Random Errors

Table B.1 gives the 24 distance measurements for a nearby galaxy. How
should we determine the best estimate of the distance to the galaxy along
with the uncertainty? Let’s first deal with determining the best estimate of
the distance first. One way to estimate the distance would be to take the
mean or average of all 24 measurements. The mean of a set of N values
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Table B.1: Distance measurements to a nearby galaxy in kpc.

741 804 780 714 810 760 778 741 737 752 780 814
742 788 760 811 848 768 742 741 786 764 696 783

{y1, y2, ..., yN} is denoted ȳ and is defined as

ȳ =
1

N

N∑
i=1

yi. (B.4)

The mean for the data set in Table B.1 is 768.3 kpc. Figure B.1 shows a
histogram of the data. The mean is near the center of the distribution of

Figure B.1: Histogram of the distance measurements from Table B.1.

data points. In this case the mean is a good best estimate of the distance to
the galaxy, but what if the distribution of distance measurements looked like
the histogram shown in Figure B.2? In this case a single, probably spurious,
outlying distance measurement at 400 kpc draws the mean away from the
central value of the distribution. In this case the median is probably a
better estimate of the distance to the galaxy. The median, ỹ is determined
by sorting the data from lowest to highest and picking the middle value when
the sample size is odd, or averaging the two numbers closest to the middle
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Figure B.2: Histogram of distance measurement with one outlier at 400 kpc.
The mean is biased toward the outlier more than the median. The mode is
the same as the median in this histogram.

when the sample size is even. For example suppose five measurements of y
yield the numbers {1, 8, 4, 3, 5}, then sorting the numbers gives {1, 3, 4, 5, 8}
and the median is ỹ = 4.

The median is a good statistic when outliers are suspected, but it is
difficult to compute because it requires sorting the data. A simpler statistic
is the mode which is just the most frequent value in the data. The mode
for the histogram shown in Figure B.2 is essentially identical to the median,
both of these statistics are less affected by the outlier than the mean.

Problem B.2
An astronomer measures the duration of the twenty successive eclipses

of a binary star system and gets the following results:

15.5, 15.2, 15.6, 15.7, 14.9, 14.7, 14.6, 15.4, 15.4, 14.8,
14.9, 15.1, 14.2, 14.5, 14.8, 14.9, 15.6, 14.1, 15.7, 14.7,

where all times are measured in days. Compute the mean, median and
mode of these data.

The uncertainty in the measurement is related to the width of the distri-
bution of data points. The crude estimate of equation (B.3) is very sensitive
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to outlying points. A better statistic that more accurately estimates the
width of the distribution, and as will learn in the next section has an impor-
tant interpretation in terms of probabilities, is the standard deviation.
The population standard deviation is the root-mean-square deviation
of the data values from the mean,

sp =

√√√√ 1

N

N∑
i=1

(yi − ȳ)2, (B.5)

and is relevant when the entire set of all possible data values is known. This
is seldom the case in science. We are usually trying to estimate the width of
the distribution from a sample of the population. In this case the relevant
statistic is the sample standard deviation

s =

√√√√ 1

N − 1

N∑
i=1

(yi − ȳ)2. (B.6)

The population standard deviation differs negligibly from the sample stan-
dard deviation when we have more than a few data points. See Bevington
and Robinson [3] for a detailed explanation for the difference between the
sample and population standard deviations.

The standard deviation is a quantitative measure of the width of the
distribution of data values, it shouldn’t change significantly as we take more
data if there is the same amount of uncertainty in each measurement. How-
ever, our intuition tells us that mean value derived from the data should
be more accurate as we take more data. This is in fact the case. The
standard deviation is a quantitative measure of the uncertainty in a single
measurement. The uncertainty in the mean is estimated by computing the
standard deviation of the mean, σmean, which is computed by dividing
the sample standard deviation by

√
N ,

σmean =
s√
N
. (B.7)

For the data of Table B.1, ȳ = 768.3 kpc, the median is essentially the
same. There aren’t any outliers so we can take the mean as the best estimate
of the distance, ybest = ȳ = 768.3 kpc. The standard deviation of the data
is s = 34 kpc. The estimate for the distance to the galaxy is determined
from the mean of the data so the uncertainty in the distance is the standard
deviation of the mean, δy = σmean = s/

√
24 = 6.9 kpc. Rounding the
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uncertainty to one significant figure and matching the significant figures in
the mean gives the best estimate of the distance as 768± 7 kpc.

Problem B.3
(a) Compute the sample standard deviation and the standard deviation
of the mean for the data in Problem B.2.

(b) State the best estimate for the eclipse duration with its associated
uncertainty.

B.6 Probability Distributions

If we continued to make additional measurements of the distance to the
galaxy, each measurement would give a slightly different value for the dis-
tance. The distance measurement is subject to random variations. Variables
that are subject to random variations due to chance are called random
variables. Of course there is a higher probability of getting some values
of distance and a lower probability of getting others. A probability dis-
tribution is a function that describes how likely we are to get a particular
value of a random variable. If the random variable, call it x, can only take
on a discrete set of values {x1, x2, ..., xM} then we can define the probability
distribution

P (xi) = the probability that a single measurement

will give a value xi ∈ {x1, x2, ..., xM}.
(B.8)

If the random variable can take on any value in a continuous range then we
define the probability distribution

P (x) dx = the probability that a single measurement

will give a value between x and x+ dx.
(B.9)

By relating statistics like the mean and the standard deviation to the
underlying probability distributions we can relate probabilities to our esti-
mated uncertainties. We typically only know the results of our observations
and don’t know the underlying probability distribution, but as we’ll learn
in the next sections we usually have a good idea of what the probability
distribution should be. To see how to relate probability distributions to
statistics lets start with the definition of the mean in equation (B.4) and
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a set of N data points {y1, y2, ..., yN}. For a discrete distribution this can
be rewritten in terms of the discrete set of possible random variable values
{x1, x2, ..., xM},

ȳ =
1

N

N∑
i=1

yi =
1

N

M∑
j=1

njxj =
M∑
j=1

nj
N
xj ,

where nj is the number of times the discrete random variable value xj ap-
pears in the data set. Notice the subtle distinction between the random
variable x and the set of data points {y1, y2, ..., yN}; all of the x values are
unique2. The probability of finding any one of the random variable values
xj in the data set is

P (xj) =
nj
N
,

therefore

ȳ =
M∑
j=1

P (xj)xj .

I have used x and y to make the distinction between the the random variable
and the actual data values obvious, but the usual conventional is to let x̄
represent the mean,

x̄ =
M∑
j=1

xjP (xj). (B.10)

For a continuous distribution the sum in equation (B.10) becomes an inte-
gration over the range of the random variable

x̄ =

∫ b

a
xP (x)dx, (B.11)

where the range of x is between a and b. You can compute any statistic
from the probability distribution. For example, the population standard
deviation is

s2
p =

M∑
j=1

(xj − x̄)2 P (xj), (B.12)

for a discrete distribution or

s2
p =

∫ b

a
(x− x̄)2 P (x)dx (B.13)

2Here’s an example to clarify the distinction. Suppose we have a set of five data points
y1 = 4, y2 = 6, y3 = 8, y4 = 6, y5 = 8. There are only three distinct values of the
random variable x1 = 4, x2 = 6, x3 = 8. For this data set n1 = 1, n2 = 2, and n3 = 2.
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for a continuous distribution.

B.6.1 The Normal Distribution

The normal, or Gaussian, distribution is the most common distribution for
most random variables encountered in physics and astronomy. In Section
B.6.3 we will learn that even in cases where the random variable isn’t gov-
erned by a normal distribution, the means derived from that distribution are
normally distributed. The normal distribution is a continuous distribution
defined by

Pn(x, µ, σ) dx =
1

σ
√

2π
e−

1
2(x−µσ )

2

dx, (B.14)

and is shown in Figure B.3. A random variable governed by the Gaussian

Figure B.3: The normal distribution. The distribution is centered on µ and
has a width defined by σ. A number drawn from this distribution has a 68%
chance of having a value within 1σ of µ, a 95% chance of being within 2σ of
µ, and a 99.7% chance being within 3σ of µ.

distribution is said to be normally distributed.
You can use equation (B.11) to show that the mean of the distribution is

µ and equation (B.13) to show that the population standard deviation is σ.
When we make a measurement of some physical quantity that is governed
by a normal distribution we have 68% chance of getting a value between
µ−σ and µ+σ, a 95% chance of getting a value between µ−2σ and µ+2σ,
and a 98.7% chance of getting a value between µ − 3σ and µ + 3σ. If we
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take the mean of several measurements we get an estimate of µ,

x̄ ≈ µ. (B.15)

The sample standard deviation gives an estimate of σ,

s ≈ σ. (B.16)

See Bevington and Robinson [3] for the proofs of these properties.

Problem B.4
Numerically integrate the normal distribution from µ − σ to µ + σ to
verify that the probability of getting x in the range µ− σ < x < µ+ σ
is 0.68.

If we measure a quantity governed by a normal distribution then the
best estimate of the value of the quantity is x̄ and the uncertainty in a single
measurement is related to σ. You can usually assume that the uncertainties
quoted in the literature are so called “one-sigma” uncertainties, that is

δx = s ≈ σ. (B.17)

This means that there is a 68% chance that a single measurement is within
1σ of µ. If you measured a quantity by computing the mean then the
appropriate uncertainty is the standard deviation of the mean,

δx =
s√
N
≈ σmean, (B.18)

where N is the number of data points used to compute the mean. This
means that if you repeated the series of N measurements, 68% of the time
you would get a value within 1σmean of µ.

B.6.2 The Poisson Distribution

Even with a perfect, noise-free detector we cannot measure the brightness
of a star with absolute certainty. This is because the emission and detection
of a photons is probabilistic. If we used a noiseless detector to count the
number of photons from a star in a given period of time, there would be no
uncertainty in number of photons registered by the detector. However, if
we repeated the measurement we would get a different number of photons
because the probability of detection of a photon is governed by quantum
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Figure B.4: The Poisson distribution with an mean of 5. Note that the
standard deviation of the distribution is

√
5.

mechanics. The probability distribution for detection is called the Poisson
distribution. It is a discrete probability distribution because we will always
detect a whole number of photons. The probability that we will count n
photons in a given trial is

Pp(n, ν) =
νn

n!
e−ν , (B.19)

where ν is related the the probability of detection. The Poisson distribu-
tion for ν = 5 is shown in Figure B.4. The Poisson distribution is the
underlying probability distribution for all counting experiments where the
measurements are uncorrelated and occur at an constant average rate.

Problem B.5
Use equation (B.10) to prove that the mean of the Poisson distribution
is ν.

The mean of the Poisson distribution is ν, but the Poisson distribution
also has the the unique property that the population standard deviation of
the distribution, sp, is equal to the square root of its mean,

sp =
√
ν. (B.20)
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Problem B.6
Use equation (B.12) to prove that sp =

√
ν for the Poisson distribution.

This gives us a convenient way to estimate the both the photon count
rate and the uncertainty in the rate from a single measurement. For a single
measurement of n counts, n is a reasonable estimate of ν. An estimate of
the uncertainty in n is therefore δn = sp ≈

√
n. Our best estimate of the of

the number of counts with uncertainty is therefore

n±
√
n. (B.21)

The fractional uncertainty is defined as

δn

nbest
. (B.22)

For a counting experiment

δn

nbest
=

√
n

n
=

1√
n
. (B.23)

The fractional uncertainty goes down as the number of counts increases.
Counting more photons produces as smaller fractional uncertainty. One
way to increase the number of photons detected from a star would be to
increase the exposure time. The number of counts is proportional to the
exposure time, t, so the fractional uncertainty

δn

nbest
∝ 1√

t
.

In order to reduce the fractional uncertainty by a factor of two we would
have to increase the exposure time by a factor of four.

Problem B.7
An astronomer is preparing to measure the brightness of a star. He
expects the photon count rate in his detector to be about 100 pho-
tons/second. Assuming the only source of noise in the measurement
comes from photon counting, what exposure time would the astronomer
need to use to get a measurement accurate to 1%?
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B.6.3 The Central Limit Theorem

There are a huge number of different possible probability distributions,
but fortunately we usually only encounter these two. Most of the time
the random variable we measure are distributed normally. This is because
most measurements are averages of individual observations and the Central
Limit Theorem states that the averages of a large number of measurements
of a random variable are normally distributed regardless of the underlying
distribution of the random variable.

Here is an example to see how this works. Suppose you go to a daycare
center measure the heights of all the children and parents in the room. If
its a large daycare with about 500 children and 500 parents, you might get
a distribution that looks like Figure B.5(a). The heights are not normally
distributed. The children’s heights are normally distributed about a mean
of about 140 cm and the adults around a mean of 180 cm. The combined
distribution of children and adults is not normally distributed. Now you
randomly sample five people from the room and compute the mean height
of the group. Your five person groups will have a random mix of children
and adults. The mean height of the group will most likely be between 140
cm and 180 cm. After doing this several times you would get a distribution
like the on shown in Figure B.5(b). It is beginning to look more like a
normal distribution. If you repeated the process with ten people in each
sample, the distribution would look even more like a normal distribution
(Figure B.5(c)). The individual heights are not normally distributed, but
the mean heights are closer to a normal distribution. The larger the number
of samples in the mean the closer the distribution is to being a normal
distribution. In addition to the distribution becoming more Gaussian, the
width of the distribution decreases as more heights are included in the mean.
It turns out that the width of the distribution of means is proportional to
1/
√
N where N is the number of values used to compute the mean. See

Bevington and Robinson [3] for a derivation of the central limit theorem
and a discussion of its limitations.

Even the Poisson distribution approaches the normal distribution for
a large number of counts. Figure B.6 shows a Poisson distribution with
ν = 20 and a normal distribution with µ = 20 and σ =

√
20. The normal

distribution is a surprisingly good approximation to the Poisson distribution
for even a relatively small number of counts.
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Figure B.5: Histogram (a) shows the distribution of 1000 heights of parents
and children in a daycare center. The histogram (b) is the distribution of
mean heights of five people chosen at random from the parent-child distribu-
tion. Histogram (c) is the distribution of mean heights of ten people chosen
at random from the parent-child distribution.
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Figure B.6: Comparison of a Poisson distribution with ν = 20 (histogram)
and normal distribution (smooth curve) for µ = 20 and σ =

√
20.

B.7 Propagation of Uncertainty

Suppose we wanted to determine the perimeter and area of a rectangular
table top from measurements of its width w = 76.4± 0.2 cm and its length
` = 153.3 ± 0.6 cm. How would we determine the uncertainties in the
perimeter and area? Let’s compute the perimeter first. The perimeter
p = 2w + 2` = 2(w + `). The highest probable value for the perimeter is
then

pmax = 2(w + δw) + 2(`+ δ`) = 2(w + `) + 2(δw + δ`),

and lowest probable value is

pmin = 2(w − δw) + 2(`− δ`) = 2(w + `)− 2(δw + δ`).

We can use equation (B.3) to get the uncertainty in p

δp ≈ pmax − pmin

2
= 2(δw + δ`).

For the example at hand, δp = 1.6 cm, so using the rounding rules of Section
B.2 gives p = 459± 2 cm.

You can always get a crude estimate the uncertainty using this brute-
force method of computing the maximum and minimum values and using
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equation (B.3), but it overestimates random uncertainties. This is because
to get the maximum uncertainty in the sum both ` and w must conspire
to be overestimates. If the uncertainties are independent and random, then
an underestimate in the measurement one of the variable, ` for example,
is partially compensated for by an overestimate in the measurement of the
other variable, w in this case. Statistical theory tells us that if some quantity
q = x + y and if x and y are normally distributed random variables, then
the sum is also normally distributed with standard deviation

σq =
√
σ2
x + σ2

y , (B.24)

where σx and σy are the standard deviations of the x and y distributions
(Bevington and Robinson [3]). This is always less than the sum of the
standard deviations of x and y. When we combine two numbers by squaring
them, adding the squares, and taking the square root as in equation (B.24),
the numbers are said to be added in quadrature. Equation (B.24) would
be the same if q = x− y so in general we have the following rule:

If q is the sum or difference of several quantities x, y, z...

q = x+ y − z · · ·

and if the uncertainties, δx, δy, δz..., are independent and random, then
the uncertainty in q is the quadrature sum,

δq =
√
δx2 + δy2 + δz+ · · ·. (B.25)

There is a similar rule for products and quotients.

If several quantities w, x, y, z... are measured with independent and
random uncertainties δw, δx, δy, δz... and

q =
w × x× · · ·
y × z × · · ·

then the fractional uncertainty in q is the quadrature sum of the factional
uncertainties in w, x, y, z...,

δq

|q|
=

√(
δw

w

)2

+

(
δx

x

)2

+

(
δy

y

)2

+

(
δz

z

)2

+ · · ·. (B.26)
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The area of the rectangle A = w` = 11712.12 cm2 and the fractional
uncertainty in A is

δA

|A|
=

√(
δw

w

)2

+

(
δ`

`

)2

=

√(
0.2

76.4

)2

+

(
0.6

153.3

)2

= 0.0047,

so δA = 55 cm2. Using the rounding rules of Section B.2 gives A = 11710±
60 cm2.

Sometimes the value we are interested in can’t be written as a simple
sum, difference, product, or quotient of the measured variables. In this case
the uncertainties add in quadrature, but each uncertainty is weighted by a
partial derivative.

Suppose that some physical quantity q(x, y, z, ...) is a function of mea-
sured values x, y, z,.... If the uncertainties, δx, δy, δz..., are independent
and random, then the uncertainty in q is

δq =

√(
∂q

∂x
δx

)2

+

(
∂q

∂y
δy

)2

+

(
∂q

∂z
δz

)2

. (B.27)

Problem B.8
Use equation (B.27) to derive equations (B.25) and (B.26).

When q is a complicated function of many variables, equation (B.27) can
be formidable, but keep in mind that we only need to know δq to at most
two significant figures. This means that if one of the terms under the radical
in equation (B.27) is significantly larger than the others we can ignore all
but the largest term.

Supplementary Problems

Problem B.9 Compute the uncertainty in the perimeter of the table dis-
cussed at the beginning of Section B.7 assuming the length and width mea-
surements are independent. Hint: Equation (B.25) gives the wrong answer.
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Problem B.10 The magnitude of a star is related to the photon count
rate ṅ by the equation

m = −2.5 log(ṅ) + C,

where C is a constant. Show that the uncertainty in the magnitude

δm ≈ δṅ

ṅ
.



Appendix C

Graphical Representation of
Data

C.1 “A picture is worth a thousand words”

Remember the old adage. A graph is the best way to make your data
understandable when one observed quantity is depends on another. For
example, suppose you measure the distance a car has traveled as time goes
on and get the values shown shown in Table C.1.

time (seconds) distance (meters)

0.24 5.76× 10−2

1.29 1.68× 100

2.35 5.55× 100

3.41 1.16× 101

4.47 2.00× 101

5.53 3.06× 101

6.59 4.34× 101

7.65 5.85× 101

Table C.1: Data for distance versus time measurement.

It is very difficult to see how the distance is changing with time just by
looking at the numbers in the table. Figure C.1 shows a graph of the data
from Table C.1. It’s easy to see from a quick look at the graph that the car
is accelerating. It’s very difficult to see this kind of trend in the data in a
table.

Take a close look at Figure C.1. Notice that the figure has clearly labeled

127
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Figure C.1: Graph of the data in Table C.1.

axes including units. You don’t need to draw lines from data point to data
points, in fact this is misleading in some cases. Try to get into the habit of
creating the plot as you take the data. Doing this allows you to recognize
immediately when a particular measurement needs to repeated or when
another data point should be taken to fill in a gap. Generating a final graph
on a computer is okay, but it’s quicker and easier to make a plot by hand on
graph paper in the lab. Use a straight edge on graph paper and be careful
to plot each point as accurately as possible.

You can represent uncertainties in your data by putting error bars on
your graphs. Table C.2 contains data from a radioactive decay experiment
where Ṅ is the decay rate as a function of time t. There is an estimated
uncertainty in the rate. Figure C.2 shows a plot of these data with error
bars to represent the uncertainty in Ṅ .

The plot in Figure C.2 is again computer generated. With a little prac-
tice, it’s often quicker and easier to do the plots in lab by hand. Microsoft
Excel does an okay job of creating plots, but it’s not really made for plot-
ting scientific data. Ask your instructor if you’d like to learn about better
software for generating scientific graphs.
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t (seconds) Ṅ

0.00 16± 4
0.05 15± 3
0.10 10± 3
0.15 12± 3
0.20 9± 3
0.25 7± 2
0.30 3± 1
0.35 5± 2
0.40 4± 2
0.45 1± 1

Table C.2: Rate of radioactive decay Ṅ as a function of time t.

0.0 0.1 0.2 0.3 0.4 0.5
t (seconds)

0

5

10

15

20

N

Figure C.2: Graph of the data in Table C.2.



APPENDIX C. GRAPHICAL REPRESENTATION OF DATA 130

C.2 Linear Fitting

Suppose you have a set of N data pairs (xi, yi), that are supposed to be
linearly related so that

y = A+Bx. (C.1)

The goal of a linear fit is to find the best fit parameters A and B. For a
linear least squares fit, the equations for A and B are derived by finding A
and B that minimizes

χ2 =

N∑
i=1

(yi −A−Bxi)2

σ2
i

, (C.2)

where σi is the uncertainty in yi.
1 The value of χ2 can be used to judge the

quality of the fit. A fit is “good” if χ2 ≈ N − 2. If χ2 � N − 2 it indicates
that the uncertainties (σi) have been overestimated. If χ2 � N − 2 then
either the uncertainties have been underestimated or y isn’t really linearly
related to x by equation (C.1).2

Given the equations for A and B, one can use standard error propagation
to derive general equations for their uncertainties. However, the values one
accepts for these uncertainties depends on the quality of the fit. In the
following sections, I outline how to estimate the uncertainties in A and B
given something other than a perfect fit. The next section deals with the
case in which σi is the same for all the data. The final section generalizes
the technique to a weighted fit where the σi can be different. I state most
of the results without proof. A more rigorous description can be found in
Bevington’s or Taylor’s books on error analysis.

C.2.1 Uncertainties for an Unweighted Fit

In this section we assume that the y-uncertainty is the same for all the data.
If we call this uncertainty σ, then

χ2 =
1

σ2

N∑
i=1

(yi −A−Bxi)2. (C.3)

The best estimates of A and B are those that minimize χ2. Taking the
partial derivatives of χ2 with respect to A and B and setting them equal to

1We will assume the error in xi is negligible
2See Chapter 12 of An Introduction to Error Analysis by Taylor for an explanation.
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zero gives

A =
(
∑
x2
i )(
∑
yi)− (

∑
xi)(

∑
xiyi)

∆
, (C.4)

B =
N(
∑
xiyi)− (

∑
xi)(

∑
yi)

∆
, (C.5)

where
∆ = N(

∑
x2
i )− (

∑
xi)

2. (C.6)

We already know the uncertainty in the yi is σ, but can also use our fit to
estimate what the uncertainties should be by looking at how much our data
points deviate from the fit. The standard deviation from the fit gives us an
estimated uncertainty

σest =

√√√√ 1

N − 2

N∑
i=1

(yi −A−Bxi)2. (C.7)

By comparing this result with the equations for χ2 [equation (C.3)] it is
relatively easy to show that

σ2
est =

χ2

N − 2
σ2. (C.8)

At this point it is convenient to define the reduced chi-squared,

χ̃2 ≡ χ2

N − 2
. (C.9)

Given this definition, σ2
est = χ̃2σ2. Note that if we have a “good” fit, χ̃2 = 1

and σest = σ as we would expect. In fact, this is what we mean by a good
fit. If χ̃2 � 1 then σest � σ and we have overestimated the errors, σi. If
χ̃2 � 1 then σest � σ and we have underestimated the error or the relation
between x and y isn’t really linear.

We can now use standard error propagation to find the uncertainties in
A and B. It isn’t too hard to show that

σA =

√∑
x2
i

∆
δy,

σB =

√
N

∆
δy,

where δy is the y-uncertainty. We now have a choice: do we let δy be our
original uncertainty estimate, σ, or the uncertainty derived from the fit, σest.
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If χ̃2 = 1 the choice is moot since they are equal. If the relation between x
and y is truly linear, σest is a better estimate of the error that we actually
have. Therefore the best estimates for σA and σB are

σA = σest

√∑
x2
i

∆
= χ̃σ

√∑
x2
i

∆
, (C.10)

σB = σest

√
N

∆
= χ̃σ

√
N

∆
. (C.11)

However, be very cautious if you find σest � σ. Having a χ2 > N − 2 may
mean the relation is not linear.

C.2.2 Uncertainties in a Weighted Fit

If the y uncertainties are not all equal then we can’t factor them out of the
sum in the expression for χ2 as we did in equation (C.3). Instead we must
use the more general expression for χ2 given in equation (C.2). When we
take the partial derivatives of equation (C.2) and set them equal to zero to
minimize χ2 we get the following equations for A and B:

A =
(
∑
wix

2
i )(
∑
wiyi)− (

∑
wixi)(

∑
wixiyi)

∆
, (C.12)

B =
(
∑
wi)(

∑
wixiyi)− (

∑
wixi)(

∑
wiyi)

∆
, (C.13)

where
∆ = (

∑
wi)(

∑
wix

2
i )− (

∑
wixi)

2, (C.14)

and wi = 1/σ2
i . Applying error propagation to the equations for A and B

allows use to compute the uncertainties in A and B. We find that

σA =

√∑
wix2

i

∆
,

σB =

√∑
wi

∆
.

However, to derive these equations we have assumed that the σi are accurate
estimates of the uncertainty so that χ̃2 = 1. If this is not the case then the
above equations will either underestimate or overestimate the uncertainties
in A and B. If we are confident that the the relation between x and y
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is linear, then just as in the case in section C.2.1, better estimates of the
uncertainties are

σA = χ̃

√∑
wix2

i

∆
, (C.15)

σB = χ̃

√∑
wi

∆
. (C.16)

However, be cautious in using these equations. If χ̃2 � 1, it could mean
that the relation between x and y is not linear. It could also mean your
uncertainty estimates aren’t reliable in which case it may be better to use
an unweighted fit. However, if you are confident that the relation between
x and y is linear, and that at least the relative size of the uncertainties are
correct, then equations (C.15) and (C.16) give you the best estimates of the
uncertainties in A and B respectively.
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