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Abstract. Necessary and sufficient conditions are given for an integrable integer-

valued function to be the multiplicity function of a generalized multiresolution anal-

ysis in L2(Rn), and also for it to be the multiplicity function of an expansive matrix
dilation wavelet in L2(Rn). For possible multiplicity functions, an explicit construc-

tion is given for the GMRA with a tight frame, and also for an associated MSF

wavelet.

Introduction

In the past ten years, wavelets have emerged as an increasingly powerful tool of
harmonic analysis on Rn. Wavelets themselves have been studied primarily using
tools of classical Fourier analysis. In this paper we show some of the ways in which
more general techniques of abstract harmonic analysis can be exploited to give new
insights into wavelets. In particular, we use the multiplicity function of Stone [S]
and Mackey [M] as a tool for producing and analyzing wavelets.

Many examples of wavelets have been produced using the related concept of a
multiresolution analysis. However, well-known examples due to Journé and others
([DL]) show that not all wavelets have an associated MRA. Indeed, Dai, Larson
and Speegle ([DLS]) have shown that single wavelets can be produced in L2(Rn)
for any dilation δA (where A is an expansive matrix) and any dimension n, yet
a result in [BCMO] proves that MRA wavelets are possible only if |detA| = 2.
In [BMM] we introduced the concept of generalized multiresolution analyses, and
showed that together with a condition on the multiplicity function we call the
consistency equation, they give a necessary and sufficient condition for the existence
of a wavelet.

In Section 1 of this paper we further explore the properties of generalized mul-
tiresolution analyses. We show that every GMRA whose multiplicity function
is finite a.e. has a tight frame, so that this apparently more general structure is
the same as the generalized frame multiresolution analyses of Papadakis ([P]), and
includes the frame multiresolution analyses of Benedetto ([B]). We then go on to
give a necessary and sufficient condition for an integrable integer-valued function
on the n-torus to produce a GMRA in L2(Rn). Our proof gives an explicit method
for constructing both the GMRA and its frame.

In Section 2, we combine our work on GMRA’s with the results in [BMM]
to give two conditions on an integrable integer-valued function that are necessary
and sufficient for it to produce a wavelet. For dilation by 2 wavelets in L2(R1)
the multiplicity function has been shown ([W]) to equal the dimension function of
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Auscher ([A]). Because of this, our work in Section 2 generalizes some recent results
of Rzeszotnik and Speegle on dilation by 2 wavelets in L2(R1) ([RS]).

Many of the techniques of this paper can be employed in studying multiwavelets
and wavelets on a general Hilbert space (see [BMM]). However, in this paper we
will only consider single wavelets on L2(Rn) and its subspaces.

Generalized Multiresolution Analyses

We view the lattice Zn as a group Γ of unitary operators on L2(Rn) acting by
γnf(x) = f(x + n). We parametrize Γ̂ = R/Γ by [−π, π)n with addition mod 2π.
For any n×n integer matrix A, all of whose eigenvalues have absolute value greater
than 1, we let δA be the unitary operator on L2(Rn) given by

[δA(f)](x) = |det(A)| 12 f(Ax).

We note, for later use, that a simple calculation shows that the actions of Γ and
δA are interrelated by the formula δ−1

A γnδA = γAn. In this context we recall the
following definition, introduced in [BMM]:

DEFINITION. By a generalized multiresolution analysis(GMRA) we shall mean
a collection {Vj}∞−∞ of closed subspaces of L2(Rn) that satisfy:

(1) Vj ⊆ Vj+1 for all j.
(2) δA(Vj) = Vj+1 for all j.
(3) ∪Vj is dense in L2(Rn) and ∩Vj = {0}.
(4) V0 is invariant under the action of Γ.

If the closure of ∪Vj is a proper subspace of L2(Rn) we say that the collection
{Vj} is a subspace GMRA.

The definition of a GMRA differs from that of an MRA in condition (4): an
MRA replaces (4) with the stronger requirement that V0 contains a scaling vector
whose translates form an orthonormal basis for V0. Although a GMRA need not
have a scaling function, by studying the action of Γ on the invariant subspace V0,
we will be able to produce a tight frame to take its place.

Let {Vj} be any GMRA, and write ρ for the unitary representation of the group
Γ given by its action on V0. By the spectral theorem for commutative groups, ρ is
uniquely determined by a projection valued measure on Γ̂. This projection valued
measure is in turn uniquely determined by an ordinary measure class on Γ̂ and
a multiplicity function m : Γ̂ 7→ {∞, 0, 1, 2, · · · }. (See, e.g. [He], [M], [Ha], [S].)
We show in [BMM] that the measure class associated with a GMRA in Rn must
be absolutely continuous with respect to Lebesgue measure. Thus the multiplicity
function, which roughly measures how many times each character in Γ̂ occurs in ρ,
completely characterizes the representation for a GMRA in L2(Rn). If the GMRA
is an MRA, translates by Γ of the single function φ give an orthonormal basis for
V0. Thus in this case, the representation ρ of Γ on V0 is equivalent to the regular
representation of Γ, which acts by translation on l2(Γ). The regular representation
is known to (weakly) contain every character exactly once, so in the MRA case
we have m ≡ 1. We will see that many other multiplicity functions are possible
for GMRA’s. We will restrict our attention to the case where m is finite almost
everywhere.
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To use the information the multiplicity function provides about ρ, we form the
direct sum L2(S1) ⊕ L2(S2) ⊕ · · · , where Sj = {x ∈ [−π, π)n : m(x) ≥ j}. Write
ρ̃ for the representation of Γ on L2(S1) ⊕ L2(S2) ⊕ · · · given by ρ̃γ(f1, f2, · · · ) =
(ei<γ,·>f1, ei<γ,·>f2, · · · ). The properties of m guarantee the existence of a unitary
map J : V0 7→ ⊕∞j=1L

2(Sj) which intertwines the actions of Γ on the two spaces, so
that Jργf = ρ̃γJf for all f ∈ V0. (See [Co] for more details.)

We can use the map J to produce a tight frame for the V0 space of any GMRA:

DEFINITION. A set of vectors {φn : n ∈ Z} is called a frame for a subspace
V ⊂ L2(Rn) if there exist positive constants C1 and C2 such that for all f ∈ V,

C1‖f‖2 ≤
∑
n∈Z

| < f, φn > |2 ≤ C2‖f‖2.

It is called a tight frame if C1 = C2.

Let φj = J−1(χSj
) (where χSj

stands for the element of ⊕∞i=1L
2(Si) whose only

nonzero component is χSj
in L2(Sj)); if Sj = ∅ we take φj = 0. We have the

following Lemma, the L2(R1) case of which appears in ([Co]):

LEMMA 1.1. If {Vj} is a GMRA whose multiplicity function is finite almost
everywhere, then {φj(·+ γ) : j ≥ 1, γ ∈ Γ} is a tight frame for V0.

Proof. Let f ∈ V0. For any g ∈ L2[−π, π)n and γ ∈ Γ, let cγ(g) be the γ Fourier
coefficient of g. Then

∑
γ∈Γ

∞∑
j=1

| < f, ργφj > |2 =
∑
γ∈Γ

∞∑
j=1

| < J(f), ρ̃γχSj > |2

=
∞∑
j=1

∑
γ∈Γ

|cγ(J(f)χSj
)|2

=
∞∑
j=1

‖J(f)χSj
‖2

= ‖J(f)‖2

= ‖f‖2.

This tight frame plays the role in a GMRA of the orthonormal basis given by the
scaling function of an MRA. Because we cannot in general write down an explicit
formula for the operator J , we cannot always explicitly construct the tight frame.
However, we will later see cases in which explicit construction is possible. In any
case, this frame satisfies many of the familiar properties of the scaling function. In
particular, we will need the following:

LEMMA 1.2.
∑
γ∈Γ φ̂i(x + 2πγ)φ̂j(x+ 2πγ) =

{
χSi

(x) if i=j
0 if i 6=j for almost all x ∈

[−π, π)n.

Proof. Both sides can be considered as periodic functions on Rn, so that it will
suffice to show they have the same Fourier coefficients. Accordingly, let cγ be the
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γth Fourier coefficient of the L2(Γ) inner product < φ̂i(x + 2π·), φ̂j(x + 2π·) >,
considered as a function on [−π, π]n. Then

cγ =
∫

[−π,π]n
e−i<γ,x>

∑
γ′∈Γ

φ̂i(x+ 2πγ′)φ̂j(x+ 2πγ′)dx

=
∑
γ′∈Γ

∫
[−π,π]n+2πγ′

e−i<γ,x>φ̂i(x)φ̂j(x)dx

=< φ̂i, e
i<γ,·>φ̂j >

=< φi, ργφj >

=< χSi , ρ̃γχSj >

=
{
cγ(χSi

) if i = j

0 if i 6= j.

To produce m and guarantee a frame, we have only used the action of Γ on V0.
Now, we will analyze m further by using δA to conjugate ρ up to V1. Let W0 be
the orthogonal complement of V0 in V1.

LEMMA 1.3. If m is the multiplicity function associated with a GMRA in L2(Rn)
then m must satisfy

(1)
∑

y∈[−π,π)n:AT y≡x mod 2π

m(y) ≥ m(x)

for almost all y ∈ [−π, π)n.

Proof. First we claim that V1 is invariant under the action of Γ on L2(Rn). For, if
f = δAg is any element in V1, with g ∈ V0, then γnf = γnδAg = δA(δ−1

A γnδA)g =
δAγAng ∈ V1. We write ρ1 for the action of Γ restricted to V1. Then δ−1

A ρ1δA
is a representation equivalent to ρ1 which acts on V0. Since δ−1

A γnδA = γAn, we
can change variables to see that the projection valued measure p1 associated with
ρ1 has multiplicity function m1(χ) equal to the sum of the multiplicities of all
the characters ψ such that ψ(Aγ) = χ(γ) for all γ ∈ Γ. Since the characters ψ
are points in [−π, π)n which act by ψ(γ) = ei<γ,ψ>, this sum is over all ψ with
< ψ,Aγ >≡< χ, γ > mod 2π. Therefore, if we let σ be the representation of Γ
on W0, with multiplicity function mσ, the decomposition V1 = V0 ⊕W0 translates
into the following information about the multiplicity function m for almost all
χ ∈ [−π, π)n: ∑

ψ∈[−π,π)n:ATψ≡χ mod 2π

m(ψ) = m(χ) +mσ(χ).

The statement of the lemma then follows from the observation that mσ(χ) ≥ 0.

We would like to determine exactly which integrable functions m : [−π, π)n 7→
{0, 1, 2, · · · } are multiplicity functions for a GMRA. Lemma 1.3 gives the first con-
dition m must satisfy. To describe the other condition, we will need some notation.
For any set G ⊂ [−π, π)n, we let G̃ = {x ∈ Rn : x = y + 2πγ for some γ ∈
Γ and y ∈ G}. Recall that Sj = {x ∈ [−π, π)n : m(x) ≥ j}. Following work of
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Rzeszotnik and Speegle ([RS]), we let ∆ = ∩∞p=0(A
T )pS̃1. Finally, for each x ∈ Rn,

we let ∆x = {y ∈ ∆ : y ≡ x mod 2π}. The second condition on m is then

(2)
∑
γ∈Γ

χ∆(x+ 2πγ) ≥ m(x).

We will show that taken together, conditions (1) and (2) give necessary and suf-
ficient conditions on m for the existence of an associated GMRA. We will prove
sufficiency by constructing a set E ⊂ L2(Rn) such that {Vj} with V̂j = L2((AT )jE)
forms a GMRA. We will need the following lemma, which gives the conditions such
an E must satisfy.

LEMMA 1.4. Let E be a measurable subset of Rn such that E ⊂ ATE and∑
γ∈Γ χE(x + 2πγ) is integrable. Then {Vj} defined by V̂j = L2((AT )jE) is a

(subspace) GMRA with multiplicity function m(x) =
∑
γ∈Γ χE(x + 2πγ). It is a

full-space GMRA if and only if in addition,

∪p∈Z(AT )pE = Rn

up to a set of measure zero.

Proof. Properties (1), (2) and (4) in the definition of a GMRA are immediate.
Also, the representation ρ of Γ on V0 is equivalent via the Fourier transform to
multiplication by ei<·,γ>on L2(E). Thus, for x ∈ [−π, π)n, m(x) =

∑
γ∈Γ χE(x +

2πγ).
To see that ∩j∈ZVj = 0, it will suffice to show that G ≡ ∩j∈Z(AT )jE has measure

0. Since det(A) ≥ 2 andG is invariant underAT , we have 2µ(G) ≤ µ(ATG) = µ(G),
so that G must have measure 0 or ∞. Since m is integrable, µ(G) ≤ µ(E) =

∫
m <

∞.
It remains to show that a collection {Vj}, that satisfies all the GMRA conditions

other than the closure of the union is dense, is a full-space GMRA if and only if
∪p∈Z(AT )p(E) = RN . Thus, let H be the closure of the union of the Vj ’s, and note
that H is invariant under dilation by A and translation by every element of RN .
(It is invariant under every dyadic translation.) Write τ for the representation of
RN determined by translation on H. Note that H = L2(RN ) if and only if τ is
equivalent to the regular representation of RN .

Suppose first that {Vj} is not a full-space GMRA, i.e., that τ is not equivalent
to the regular representation. This implies that there exists a set F ⊆ RN having
positive measure such that f̂(x) = 0 for every x ∈ F and f ∈ H. SinceH is invariant
under dilation by A, it follows in fact that F may be chosen to be invariant under
dilation by AT . We then have that χE((AT )p(x)) = 0 for every x ∈ F, implying
that (AT )p(x) /∈ E for every x ∈ F and every integer p. Hence, F is disjoint from
∪(AT )p(E).

Conversely, Suppose F = Rn \ ∪(AT )p(E) has positive measure. Then, any
function g, whose Fourier transform is supported on F, will be orthogonal to H,
implying that τ is a proper subrepresentation of the regular representation.

THEOREM 1.5. Let m : [−π, π)n 7→ {0, 1, 2, · · · } be an integrable function.
Then m is the multiplicity function for a (subspace) GMRA in L2(Rn) if and only
if

(1)
∑

y∈[−π,π)n:AT y≡x mod 2π

m(y) ≥ m(x)
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and

(2)
∑
γ∈Γ

χ∆(x+ 2πγ) ≥ m(x)

for almost all x ∈ [−π, π)n. It is the multiplicity function for a full-space GMRA if
in addition

∪p∈Z(AT )p∆ = Rn

up to a set of measure zero.

Proof. First we suppose m is associated with a GMRA. Lemma 1.3 then proves that
equation (1) holds. To prove (2), fix a j and an x with m(x) = j. Then x ∈ S̃j ⊂ S̃i
for i ≤ j. By Lemma 1.2, for each i ≤ j, ∃γi such that φ̂i(x+ 2πγi) 6= 0. Again by
Lemma 1.2, these translates x + 2πγ1, x + 2πγ2, · · · , x + 2πγj can be taken to be
distinct.

We know that we have V̂0 ⊂ V̂p for p ≥ 0, and also that V̂p is spanned by
functions of the form ei<·,(A

T )−pγ>φ̂i((AT )−px). Thus, since φ̂i ∈ V̂0, we have
for any y ∈ [−π, π)n, φ̂k((AT )−py) = 0 ∀k =⇒ φ̂i(y) = 0. Applying this to
y = x+2πγi we get for each 1 ≤ i ≤ j, an i′ ≥ 1 such that φ̂i′((AT )−p(x+2πγi)) 6= 0.
This in turn implies that x+ 2πγi ∈ (AT )pS̃i′ ⊂ (AT )pS̃1 for each p ≥ 0 and each
1 ≤ i ≤ j. We have thus found j distinct translates of x in ∆.

Now to prove the converse direction of the theorem, supposem satisfies equations
(1) and (2). Let Si = {x ∈ [−π, π)n : m(x) ≥ i} as before. By equation (2) we
know that each x ∈ Si has i distinct translates x + 2πγ1, x + 2πγ2, · · · , x + 2πγi
in ∆. We will prove that there is a GMRA associated with m by building a set
E = ∪∞j=1Ej ⊂ Rn such that E ⊂ ATE, Ej is 2π−translation congruent to Sj , and
the Ej are pairwise disjoint. Our GMRA will then be defined by V̂p = L2((AT )pE)
for p ∈ Z.

First we build a set E1 such that E1 ⊂ ATE1 and E1 is 2π−translation congruent
to S1. Let F be an open neighborhood of the origin in Rn such that F ⊆ [−π, π)n

and F ⊆ ATF . Such a neighborhood can be found by putting AT into canoni-
cal form as a complex matrix, applying the resulting change of basis matrix to a
neighborhood of the origin in Cn, and then taking real parts. This set F has the
property that ∪p∈Z(AT )pF = Rn. (see e.g. [GH]). Let E1,0 = ∆∩F . We use E1,0 to
recursively define a partition of S1 as follows: Let S1,0 = E1,0, and for j ≥ 1, define
S1,j = {x ∈ S1 \ ∪j−1

k=1S1,k : ∆x ∩ (AT )jE1,0 6= ∅}. By equation (2), ∪∞j=0S1,j = S1.
We will use the partition {S1,j} to recursively construct disjoint pieces E1,j of

E1, with E1,j 2π−translation congruent to S1,j . We already have E1,0 = S1,0. Now
suppose we have constructed E1,k for k < j. If S1,j is empty, take E1,j = ∅. If
x ∈ S1,j , then there is a translate of x in ∆ ∩ (AT )jE1,0 ⊂ AT (∆ ∩ (AT )j−1E1,0),
so x = AT z for some z ∈ ∆∩ (AT )j−1E1,0. If we let y ∈ [−π, π)n be congruent to z
mod 2π, then y ∈ S1,j−1, since if y ∈ S1,k for k < j − 1, we would have x ∈ S1,k+1,
contradicting x ∈ S1,j . If there is more than one z with the properties we have
described, let yx be the point of smallest absolute value in S1,j−1 with AT yx ≡ x
mod 2π. Let yx + 2πγ1,yx

be the translate of yx in E1,j−1. Choose γ1,x ∈ Γ so that
x+ 2πγ1,x = AT (yx + 2πγ1,yx

). Take E1,j = {(x+ 2πγx,1) : x ∈ S1,j}.
We finally let E1 = ∪∞j=0E1,j . Since E1,j is 2π−translation congruent to S1,j we

immediately see that E1 is 2π-translation congruent to S1. Since E1,j ⊂ ATE1,j−1
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for j > 0, and E1,0 ⊂ ATE1,0 we have that E1 ⊂ ATE1. This completes the
construction of E1.

Now suppose we have constructed pairwise disjoint sets E1, E2, · · ·EN−1 such
that Ej is 2π-translation congruent to Sj , and ∪N−1

j=1 Ej ⊂ AT (∪N−1
j=1 Ej). If SN = ∅,

then Sj = ∅ for all j ≥ N , and we take Ej = ∅ for j ≥ N as well. If not, we proceed
to construct EN from ∪N−1

j=1 Ej by a technique that is similar to the method used
to build E1 from E1,0. Thus we take EN,0 = ∪N−1

k=1 Ek. Note that for N > 1, EN,0
will be used to construct EN , but will not be contained in EN . As before, we first
recursively define a partition of SN . Since EN,0 is to be disjoint from EN , we let
SN,0 = ∅. For j ≥ 1, define SN,j = {x ∈ SN \(∪j−1

k=1SN,k) : card(∆x∩(AT )jEN,0)) ≥
N}. By equation (2), ∪∞j=1SN,j = SN .

We will use the partition {SN,j} to recursively construct disjoint pieces EN,j
of EN , with EN,j 2π−translation congruent to SN,j for j > 0. First we construct
EN,1. If x ∈ SN,1 then there are at leastN translates of x in ∆∩(AT )EN,0. However,
since in each Ej there is at most one point congruent to x, there are at most N − 1
translates of x in EN,0 = ∪N−1

k=1 Ek. Choose γx,N ∈ Γ so that x + 2πγx,N is the
smallest in absolute value among all the translates of x that are in ∆ ∩ (AT )EN,0
but are not in EN,0. Let EN,1 = {x + 2πγx,N : x ∈ SN,1}, and note that EN,1 is
disjoint from EN,0.

Now take j ≥ 2, and suppose we have constructed pairwise disjoint sets EN,k for
k < j. If x ∈ SN,j , then there are at least N translates of x, call them x1, x2, · · · in
∆ ∩ (AT )jEN,0 ⊂ AT (∆ ∩ (AT )j−1EN,0). We claim that (AT )−1x1, (AT )−1x2, · · ·
are all in the same congruence class y mod 2π. If not, when we apply equation (1)
to x we get at least two nonzero terms on the left-hand side. If we let q1, q2, · · · qk be
the distinct points in [−π, π)n which correspond to these nonzero terms, equation
(1) gives

∑k
l=1m(ql) ≥ N. Since each Ej contains at most one translate of any

given point, each ql has min(m(ql), N − 1) translates in EN,0 = ∪N−1
k=1 Ek. So,

since
∑k
l=1 min(m(ql), N − 1) ≥ N, there are at least N translates of the qj ’s in

EN,0. But, since x /∈ SN,1 we know that ∆ ∩ (AT )EN,0 cannot contain N different
translates of x.

If yx is the single congruence class of (AT )−1x1, (AT )−1x2, · · · then we have
shown that the cardinality of ∆yx

∩ (AT )j−1EN,0 is at least N , so yx ∈ SN,j−1. Let
yx + 2πγyx,Nbe the translate of yx in EN,j−1. Choose γx,N ∈ Γ so that AT (yx +
2πγyx,N ) = x+ 2πγx,N . Since yx + 2πγyx,N /∈ EN,0 and EN,0 ⊂ AT (EN,0) we have
x+2πγx,N /∈ EN,0. Define EN,j = {(x+2πγx,N ) : x ∈ SN,j}, and EN = ∪∞j=1EN,j .
As in the case of E1, since EN,j is 2π−translation congruent to SN,j , we immediately
see that EN is 2π-translation congruent to SN . Also, since EN,j ⊂ ATEN,j−1 for
j > 0, and EN,0 = ∪N−1

j=1 Ej . we have that (∪Nj=1Ej) ⊂ AT (∪Nj=1Ej).
We let E = ∪∞j=1Ej . Our inductive procedure guarantees that E ⊂ ATE, that

Ej is 2π-translation congruent to Sj , and that the Ej are pairwise disjoint. Let
V̂p = L2((AT )pE), p ∈ Z. It follows from Lemma 1.4 that {Vp} is a (subspace)
GMRA. If, in addition, every x ∈ Rn is of the form x = (AT )ry for some y ∈ ∆
and r ∈ Z, write y = (AT )sw for w ∈ F and s ≥ 0 to obtain x = (AT )r+sw, with
w ∈ ∆ ∩ F ⊂ E. Again by Lemma 1.4, we see that {Vp} is a full-space GMRA in
this case.

Given a multiplicity function that satisfies conditions (1) and (2), there may be
many associated GMRA’s. For example, m ≡ 1 is associated to all possible MRA’s.
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For each allowable multiplicity function, the proof of Theorem 1.5 gives an explicit
technique for building one of the associated GMRA’s. By an argument similar to
Lemma 1.1, we can also use the construction in the proof to build a tight frame for
our GMRA, by taking φ̂j = χEj

.

GMRA EXAMPLES. For the trivial case of m ≡ 1, conditions (1) and (2) are
always satisfied, so the proof of Theorem 1.5 gives a method for building a full-space
MRA for an arbitrary dilation in any dimension. If [−π, π)n ⊂ AT ([−π, π)n), then
the construction ends with E1,0, and we have that V̂j = L2((AT )j [−π, π)n) and
that V0 has scaling function φ with φ̂ = χ[−π,π)n . If, on the other hand, [−π, π)n 6⊂
AT ([−π, π)n), then the construction must take E1,0 = F to be a proper subset
of [−π, π)n, and the other E1,k’s are not all empty. For example, if in L2(R2),

A =
(

2 3
−2 −2

)
then F cannot be taken to be [−π, π)2, but it can be taken to be

the parallelogram with vertices at ±(2, 1), ±(2, 3). The construction in the proof of
Theorem 1.5 then leads to a polygon E1 with vertices at ±(π, π− 4), ±(π, 3π− 4),
±(4 − π, π), and ±(π − 4, π). We have an MRA with V̂0 = L2(E1) and scaling
function φ with φ̂ = χE1 .

If we pick a proper subset B ⊂ [−π, π)n, thenm = χB may or may not satisfy the
two conditions of Theorem 1.5. However, it will if we take B to be a neighborhood
of the origin such that B ⊆ ATB. The theorem then gives a full-space GMRA with
V̂0 = L2(B), and a frame (no scaling function exists) consisting of translates of φ
with φ̂ = χB .

To get GMRA’s with higher multiplicities, we can, for example take m(x) ={
2 if x∈B
1 if x/∈B , where B is any subset of [−π, π)n. Since ∆ = Rn, condition (2) is easily

satisfied. Condition (1) follows since there are always at least two terms on the left

hand side, each of which is at least 1. For example, if we again let A =
(

2 3
−2 −2

)
in L2(R2), and let B be the parallelogram with vertices at ±(2, 1), ±(2, 3), then the
construction gives E1 as before a polygon with vertices at ±(π, π−4), ±(π, 3π−4),
±(4−π, π), and ±(π−4, π). The next level of construction, E2, is the union of two
parallelograms R and −R, where R has vertices (2π − 2, 2π − 1), (2π − 2, 2π − 3),
(2π, 2π − 1) and (2π, 2π + 1). The GMRA, given by V̂1 = L2(E1 ∪ E2), has frame
consisting of translates of φ1 and φ2 with φ̂1 = χE1 and φ̂2 = χE2 .

Wavelets and the multiplicity function

We now apply the results of the previous section to wavelets. In our context, a
wavelet is defined as follows:

DEFINITION. A wavelet is a vector ψ ∈ L2(Rn) such that the collection
{δj(γ(ψ))}, for j ∈ Z and γ ∈ Γ forms an orthonormal basis for L2(Rn). The
vector ψ is called a subspace wavelet if these vectors form an orthonormal basis for
a subspace of L2(Rn).

It is not difficult to show that every wavelet has an associated GMRA, with Vj
equal to the closed linear span of the vectors δk(γ(ψ)) for k < j and γ ∈ Γ. If we
write V1 = V0 ⊕W0, translates of the wavelet ψ then give an orthonormal basis for
W0. The representation of Γ on W0 has multiplicity function identically equal to 1.
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Thus if we analyze the representation of Γ on each piece as in Lemma 1.3, we get
the consistency equation:

(1′)
∑

y∈[−π,π)n:AT y≡x mod 2π

m(y) = m(x) + 1

This consistency equation can be shown to give a necessary and sufficient con-
dition for a GMRA to have an associated wavelet:

THEOREM 2.1. If ψ is a wavelet in L2(Rn), then the collection of subspaces{
Vj = sp{δk(γ(ψ)) : k < j, γ ∈ Γ}

}
is a generalized multiresolution analysis, whose

multiplicity function m satisfies the following consistency equation a.e. on [−π, π)n:

(1′)
∑

y∈[−π,π)n:AT y≡x mod 2π

m(y) = m(x) + 1

Conversely, if {Vj} is a generalized multiresolution analysis of L2(Rn) whose
multiplicity function m is finite a.e. and satisfies the consistency equation (1′) a.e.
on [−π, π)n, then there exists a vector ψ in the subspace W0 that forms a wavelet for
L2(Rn), with

{
Vj = sp{δk(γ(ψ)) : k < j, γ ∈ Γ}

}
. The analogous statements hold

for subspace GMRA’s and subspace wavelets.

Proof. see [BMM]

Putting this result together with Theorem 1.5, we have the following necessary
and sufficient conditions for an integrable function m : [−π, π)n 7→ {0, 1, 2, · · · } to
determine a wavelet:

THEOREM 2.2. Let m be an integrable function mapping [−π, π)n into {0, 1, 2, · · · }.
There exists a (subspace) wavelet whose multiplicity function is m if and only if

(1′)
∑

y∈[−π,π)n:AT y≡χ mod 2π

m(y) = m(x) + 1

and

(2)
∑
j∈Γ

χ∆(x+ 2πγ) ≥ m(x).

Proof. The statement follows immediately from Theorem 1.5 and Theorem 2.1.

Given a function m which satisfies these two properties, we can build a wavelet
by first using the proof of Theorem 1.5 to build a set E such that {Vj} given
by V̂j = L2((AT )jE) is an associated GMRA. Then since Ŵ0 = L2(W ) where
W = ATE \ E, we can take ψ̂ = χW . A wavelet ψ such that |ψ̂| = χW for some
set W ⊂ Rn is called a minimally supported frequency (MSF) wavelet; W is called
a wavelet set. Thus we have the following corollary:

COROLLARY 2.3. If m is an integrable function which is the multiplicity func-
tion for any wavelet in L2(Rn) then it is the multiplicity function for an MSF
wavelet in L2(Rn).
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REMARK. For dilation by 2 wavelets in L2(R1), the multiplicity function has
been shown ( [W]) to equal the dimension function

Dψ(x) =
∞∑
j=1

∑
k∈Z

|ψ̂(2j(x+ 2πk))|2

which was introduced by Auscher in [A]. Calogero [Ca] has generalized the dimen-
sion function to dilation by arbitrary expansive matrices in L2(Rn), and used it
to characterize MRA wavelets in this more general context. Recently, Rzeszotnik
and Speegle ( [RS]) gave necessary and sufficient conditions for a function map-
ping [−π, π) to {0, 1, 2, · · · } to be the dimension function of a dilation by 2 wavelet
in L2(R1). Their conditions are equivalent to those of Theorem 2.2 for full space
wavelets in this special case, and they obtain the corresponding special case of Corol-
lary 2.3.

WAVELET EXAMPLES. The MRA examples explored in the previous section
satisfies the consistency equation (1′) if and only if det(A) = 2, since in this case
there are exactly two terms on the left-hand side. Thus, in this case, our con-
struction in the previous section can also be used as construction of MSF wavelets.
In particular, this gives a new proof of a result by Gu and Han [GH] that MRA
MSF wavelets always exist for expansive matrices of determinant 2. The particular
higher multiplicity example of a GMRA given in Section 1, m(x) =

{
2 if x∈B
1 if x/∈B , for

B a measurable subset of [−π, π)n, can never have an associated wavelet. This can
be seen by integrating the consistency equation to get µ(E) = (2π)n

det(A)−1 ≤ (2π)n.
Thus a wavelet multiplicity function that takes on values greater than 1 must also
take on the value 0.

New examples of wavelet sets with varying multiplicities can be easily found by
building a solution m to the consistency equation and then checking that it satisfies
equation (2) as well. In [BMM] we use the consistency equation in this way to to
give a technique for building all wavelet sets in L2(Rn), and go on to construct
several examples.
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