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Smooth well-localized Parseval wavelets based on wavelet
sets in R2

Kathy D. Merrill

Abstract. A generalized filter construction is used to build non-MRA Par-

seval wavelets for dilation by 2 in L2(R2). These examples have the same

multiplicity functions as wavelet sets, yet can be made to be Cr with Cr

Fourier transform for any fixed positive integer r.

1. Introduction

Wavelets in L2(R2) use translates and dilates of a single function to provide
bases or frames that are particularly useful in applications such as image processing.
Here, by an orthonormal wavelet, we will mean a function ψ ∈ L2(R2) such that
{ψj,k ≡ 2jψ(2jx − k)} form an orthonormal basis for L2(R2). The function ψ is
instead called a Parseval wavelet if {ψj,k} form a Parseval frame (normalized tight
frame) for L2(R2), so that for each f ∈ L2 we have ‖f‖2 =

∑
j,k |〈f, ψj,k〉|2. In

either case, the dilates and translates of the wavelet can be used to reconstruct all
L2 functions.

The earliest wavelets in two-dimensional space were built using tensor products
of their one-dimensional counterparts, and thus consisted of four wavelet functions
rather than a single function as in the definition above. Dai, Larson and Speegle
[13] showed in 1997 that even in a much broader context, single wavelets exist in
the form of wavelet set wavelets, whose Fourier transform ψ̂ is the characteristic
function of a set. Because of their discontinuous Fourier transform, wavelet set
wavelets are not well-localized, and thus while important to wavelet theory, they
not very useful in applications. In fact, any single orthonormal wavelet for dilation
by 2 in L2(R2) must be non-MRA [3] and thus cannot be simultaneously smooth
and well-localized [15]. Parseval wavelets are not so restricted.

In this paper we use generalized filters on wavelet sets in R2 to build single
Parseval wavelets that are both smooth and well-localized. Unlike other such 2-
dimensional Parseval wavelets in the literature (see e.g.[1]), those produced in this
paper have known multiplicity functions, filters and generalized multiresolution
structures. In Section 2 we describe the use of generalized filters to build these
smooth, well-localized Parseval wavelets on any wavelet set that has a relatively
simple structure. In Section 3, we use this procedure to build such wavelets on
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the wedding cake wavelet set of Dai, Larson and Speegle [14] and on the recently
discovered diamond wavelet set of [16], which is the finite union of convex polygons.

2. Generalized filters on wavelet sets

The generalized filters we will use to build our wavelets are based on a multi-
resolution structure that we now describe. Any orthonormal wavelet ψ can be used
to divide L2(R2) into a nested sequence of closed subspaces defined by the level
of zoom: Vj = span{ψi,k : i < j}. If the {Vj} come from an orthonormal wavelet,
they form a Generalized Multiresolution Analysis (GMRA) [7], defined by
the properties:

(1) Vj ⊂ Vj+1

(2) Vj+1 = {δ(f) ≡ 2f(2x)}f∈Vj

(3) ∪Vj dense in L2(R2) and ∩Vj = {0}
(4) V0 is invariant under translation by Z2.

This definition differs from the classical multiresolution analysis (MRA) only in
condition (4): An MRA requires that V0 has a scaling function φ such that translates
of φ form an orthonormal basis for V0, while a GMRA requires only that V0 be
invariant under translation by the integers. In spite of this difference, it is shown in
[7] that a GMRA has almost as much structure as an MRA. Translation is a unitary
representation of Z2 on V0, and thus is completely determined by a multiplicity
function m : R2/Z2 7→ {0, 1, 2, · · · ,∞} describing how many times each character
occurs as a subrepresentation. The multiplicity function is identically 1 if and only
if the GMRA is actually an MRA. Further, by writing V1 = V0⊕W0, representation
theory can be used (see [7]) to show that the GMRA has an associated orthonormal
wavelet if and only if the multiplicity function satisfies a consistency equation:

(2.1) m(ζ) + 1 =
4∑

l=1

m

(
ζ

2
+ ωl

)
,

where we parameterize R2/Z2 by [− 1
2 ,

1
2 )2, and denote the preimages of 0 under

multiplication by 2 mod 1 by {ωl} = {0, ( 1
2 , 0), (0, 1

2 ), ( 1
2 ,

1
2 )}. The multiplicity

function for the wavelet determined by a wavelet set W is given by

(2.2) m(ζ) =
∑
k∈Z2

χE(ζ + k),

where E = ∪j<02jW is the generalized scaling set that determines the GMRA via
V̂j = L2(2jE) [7]. In this paper, we will use the multiplicity functions of known
wavelet sets to build smooth and well-localized Parseval wavelets with the same
multiplicity function.

To simplify our construction, we will restrict our attention to wavelet sets
whose multiplicity functions are bounded by 1 and supported on sets with relatively
simple geometric structure. As is traditional in the literature, we label that support
S1 = {ζ : m(ζ) ≥ 1}. Note that S1 is the same as the generalized scaling set E
mod 1. Since a single wavelet in L2(R2) cannot be an MRA wavelet, we know that
S1 is a proper subset of [− 1

2 ,
1
2 )2. Our particular restrictions on S1 are as follows.

Our first requirement is that S1 be oriented along either the x axis, the y axis, or
one of the lines y = ±x, which we call the central axis of S1. In particular, we
require that S1 ⊂ A, where A is one of the sets {|x| ≤ 1

4}, {|y| ≤
1
4}, {|x− y| ≤

1
4},
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or {|x + y| ≤ 1
4} (mod 1). The existence of such an axis is usually apparent in

the wavelet set W = 2E \ E. Our second requirement is that all the connected
components (mod 1) of the interior S◦1 are star-shaped, and that the origin is a star
center of one of the components. Because of the consistency equation (2.1), for each
ζ ∈ S1, there will be exactly two of the four preimages under dilation by 2, { ζ

2 +ωl},
that are inside S1. Our third requirement is that the collection of the two preimages
of the points in a given component of S◦1 has itself two connected components. We
let P ⊂ S1 be the set of these two preimages of all the points in S1. For points
in C ≡ the connected component of 0 in S1, one of these preimages will be 1

2C,
and the other will be a component around one of the ωl ∈ {(0, 1

2 ), ( 1
2 , 0), ( 1

2 ,
1
2 )}

(depending on the central axis). In order to use this point to describe the central
axis, we will further differentiate between ωl = ( 1

2 ,
1
2 ) and ωl = ( 1

2 ,−
1
2 ), based

on the location of the preimages of ωl inside S1, which will distinguish between
central axes y = x and y = −x. We let ω∗l ∈ {(0, 1

2 ), ( 1
2 , 0), ( 1

2 ,
1
2 ), ( 1

2 ,−
1
2 )} be the

point that with 0 determines the central axis of S1. Our fourth requirement is that
ω∗l /∈ C but ± 4

9ω
∗
l ∈ C.

The final two requirements on S1 have to do with its boundary. Wavelet sets
and their multiplicity functions are only determined a.e.. However, for convenience
in constructing our smooth filters, we take S1 and P to include the boundaries of
their interiors, which we label as ∂S1 and ∂P respectively. Our fifth requirement is
that ∂S1 be composed of a countable (possibly finite) number of line segments whose
endpoints have at most a finite number of limit points. Because of the existence
of a central axis, for ζ in a small neighborhood of a boundary point of S1, only a
fixed two terms can be nonzero in the right-hand side of the consistency equation,
so that points on the boundary of S◦1 must satisfy the consistency equation as
well. Because of this and the third requirement, ∂P will be a subset of the two
preimages of ∂S1, and thus will also satisfy the property of the fifth requirement.
The consistency equation implies that for each ζ on the boundary of S1 (mod 1),
exactly one of the preimages lies on the boundary of S1 as well, and the other lies
in the interior of S1. Since all boundary points of P are preimages of boundary
points of S1, this divides ∂P into two types of points and insures that each point
on the boundary of S1 has one preimage of each type. Our final, sixth requirement
of the support of the multiplicity function is that there are only a finite number of
transition points between these two types of boundary points in ∂P , and that none
of these transition points coincide with limit points of the line segment endpoints
and none lie on the central axis. As a consequence, there exists an ε1 neighborhood
of the central axis that contains no transition points. We say that a multiplicity
function has star-simple single-axis support if all of six of these requirements are
met.

Many of the examples of dilation 2 wavelet sets in R2 that appear in the lit-
erature have multiplicity functions with star-simple single-axis support. Examples
of this type include the wedding cake set of [14], the alternative wedding cake and
wedding night sets of [12], and the diamond sets of [16] (except for the Journé-like
example that has points with multiplicity 2). The technique developed in this pa-
per can be modified to work on some other examples that fail to have star-simple
single-axis support, such as the pine tree set of [19] (which fails the third require-
ment, but only for one component of S◦1 ), and the four corners set of [14] and [17]
(which has two axes instead of one). However, examples such as these introduce
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complications that must be dealt with on a case by case basis. Other examples,
such as the windmill set of [7] and [11], as well as the ”origin as a limit point” set
of [17], fail to have star-simple support for more serious reasons (more than one
component around a preimage of the origin), which cannot be easily overcome.

To build our Parseval wavelets with the same multiplicity functions as wavelet
sets with the simple geometric structure described above, we use a generalization
of MRA filter techniques to GMRA’s, developed in [4] and [5]. For any GMRA,
there exists a unitary equivalence between translation on V0 and multiplication
by exponentials on

⊕
L2(Sj), where Sj = {ζ : m(ζ) ≥ j}, which plays a similar

role to that of the classical Fourier transform in the MRA case. Generalized filters
associated to the multiplicity functionm can be built using this unitary equivalence.
For the multiplicity function for a wavelet set with m ≤ 1, the generalized filters
are two periodic functions, h and g, which are supported on the periodization of
S1 = {ζ : m(ζ) ≥ 1}, and satisfy orthonormality conditions similar to those of
classical filters. In particular, we will use the following special case of a theorem
from [5].

Theorem 2.1. Given a multiplicity function m for a GMRA that satisfies m ≤
1, suppose h and g are periodic functions that are supported on the periodization
of S1 = {ζ : m(ζ) ≥ 1}, Lipschitz continuous in a neighborhood of the origin, and
that satisfy the three generalized orthonormality conditions

(2.3)
4∑

l=1

|h(ζ
2

+ ωl)|2 = 4χ
S1

(ζ)

(2.4)
4∑

l=1

|g(ζ
2

+ ωl)|2 = 4

and

(2.5)
4∑

l=1

h(
ζ

2
+ ωl)g(

ζ

2
+ ωl) = 0,

where {ωl} = {(0, 0), ( 1
2 , 0), (0, 1

2 ), ( 1
2 ,

1
2 )} are the preimages of 0 under multipli-

cation by 2 mod 1. Suppose in addition that h satisfies the generalized lowpass
condition |h(0)| = 2. Let φ̂(ζ) =

∏∞
k=1

1
2h(

ζ
2k ). Then the translates of φ determine

the core subspace V0 of a GMRA, and ψ̂(ζ) ≡ 1
2g(

ζ
2 )φ̂( ζ

2 ) is the Fourier transform
of a Parseval wavelet on L2(R2).

To design filters that we can use in this theorem to construct our Cr wavelets,
we will first build functions hr and gr that have desirable properties on [− 1

2 ,
1
2 )2,

and then take their periodizations. To satisfy the conditions of Theorem 2.1, we
must take hr = gr = 0 on Sc

1. We also must take hr = 0 and |gr| = 2 on S1 \ P .
(The necessity of |gr| = 2 on this set follows from (2.4) since by the consistency
equation none of the other terms that appear on its left-hand side can be nonzero.)
Note that thus gr will necessarily be discontinuous on the boundary between S1 \P
and Sc

1. Since S1 cannot be all of [− 1
2 ,

1
2 )2, equation (2.3) implies that hr must

have points of discontinuity as well. Our goal in the next lemma is to build filters
hr and gr that are as close to C∞ as possible, and that vanish rapidly near the
points ω∗l and 1

3ω
∗
l . This second characteristic will be needed later to force the
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infinite product in Theorem 2.1 to vanish rapidly at ∞. Recall that P is the union
of the two preimages of S◦1 in S1 under dilation by 2 mod 1, C is the connected
component of the origin in S◦1 , and ω∗l is the nonzero preimage of 0, which together
with 0, determines the central axis of S1.

Lemma 2.2. Let m be a multiplicity function that is bounded by 1 and has star-
simple single-axis support. Then for each integer r ≥ 1, there exist filters hr and gr

on [− 1
2 ,

1
2 )2 whose periodizations satisfy the conditions of Theorem 2.1 and which

have the following properties:
(1) hr = 0 on ∂P ∩ S◦1 and hr is nonzero a.e. on P .
(2) hr and gr are C∞ on [− 1

2 ,
1
2 )2 \ ∂S1. Their partial derivatives of all

orders are bounded on closed sets that contain no Transition Points, are 0
at ζ = 0 and ζ = ω∗l , and approach 0 as ζ → (∂P \ {Transition Points}).

(3) ∃ an ε2 > 0 such that |hr(ζ)| < |ζ − ω∗l |r+2 and |Dhr(ζ)| < |ζ − ω∗l |2 for
|ζ − t(ω∗l )| < ε2, 8

9 < t < 10
9 , and D any partial differentiation operator of

order less than or equal r.
(4) ∃ an ε3 > 0 such that |hr(ζ)| < |ζ ± 1

3ω
∗
l |r+2 and |Dhr(ζ)| < |ζ ± 1

3ω
∗
l |2

for |ζ± t(ω∗l )| < ε3, 2
9 < t < 4

9 , and D any partial differentiation operator
of order less than or equal r.

Proof. Theorem 2.1 requires the support of hr and gr be contained in S1. As
mentioned above, we are also required by the generalized orthonormality condtions
to define hr = 0 on S1 \ P . We further define hr = 0 on ∂P ∩ S◦1 , as specified
in the statement of the Lemma, and take hr = 2 on (∂P ∩ ∂S1). Note that this
definition is consistent with the orthonormality conditions, because requirement 3
of star-simple single-axis support requires that 2(∂P ) ⊂ ∂S1, and the consistency
equation implies that for each ζ on the boundary of S1, exactly one of its preimages
in P lies on the boundary of S1 as well, and the other lies in the interior of S1. To
finish the construction of hr, we must define it on P to satisfy the orthonormality
condition (2.3) as well as the Lemma’s conditions (2), (3), and (4). We will first
define a preliminary version h̃r of hr that has the same boundary values and satisfies
the orthonormality condition (2.3) as well as conditions (1)-(3). For this, we use
polar coordinates on each connected component of P in terms of a star center.
That is, if R is a connected component of P with star-center c, we will use polar
coordinates to define h̃r(ζ − c) for ζ ∈ R. After using this technique to define h̃r

on all connected components of P , we will alter h̃r to form our filter hr, which will
also satisfy condition (4). Finally, we will use that definition to construct gr in a
manner similar to the classical derivation of high-pass filters from their low-pass
counterparts, so that it satisfies conditions 2.4 and 2.5 as well as the conditions of
the Lemma.

Let fr,α,β be a monotonic C∞ function on [α, β] such that fr,α,β(α) = 0,
fr,α,β(β) = 1, | dr

dxr fr,α,β(x)| < |x − α|2 for |x − α| < 2
3 |β − α|, and the one-sided

derivatives of all orders of fr,α,β(α) vanish at both α and β. By the Mean Value
Theorem, we know that |fr,α,β(x)| < |x−α|r+2 for |x−α| < 2

3 |β−α|. We will first
use the fr,α,β to define our preliminary filter h̃r on R = the connected component
of ω∗l in P , which we know (by the central axis requirement and by ω∗l /∈ C) to be
given by R = ω∗l + 1

2C. Note that since 1
2C ⊂ C, all of the boundary points of 1

2C

have h̃r = 0, and thus all of the boundary points of this region R have h̃r = 2. As
mentioned above, we will use polar coordinates on R − c, where the star-center c
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can be taken to be ω∗l in this case. Suppose the polar functions ρ = aj(θ) defined
on θj < θ < θj+1 describe successive line segments in the boundary of R − c. (If
the line segments in the boundary of R have more than one limit point, we will
need more than one such sequence.) Our basic building block will be the function
2fr,0,1( ρ

aj(θ) ) defined on the polar sector (R − c) ∩ {θj ≤ θ ≤ θj+1}. This function
has the correct value on the boundary of P , and goes to 0 faster than ρr+2 at 0. In
order to accomplish a C∞ transition between sectors, we use another copy of f1,α,β

to phase the boundary for each sector in during the last half of the previous sector,
and out during the first half of the following sector. Specifically we define

h̃r(ζ − c) = h̃r(ρ, θ)(2.6)

=


2fr,0,1( ρ

aj(θ) )
(
f
1,

θj+θj+1
2 ,θj

(θ)
(
fr,0,1( ρ

aj−1(θ) )− 1
)

+ 1
)

if θj ≤ θ ≤ θj+θj+1
2

2fr,0,1( ρ
aj(θ) )

(
f
1,

θj+θj+1
2 ,θj+1

(θ)
(
fr,0,1( ρ

aj+1(θ) )− 1
)

+ 1
)

if θj+θj+1
2 ≤ θ < θj+1.

We then define h̃r on 1
2C by

(2.7) h̃r(ζ) =
√

4− (h̃r(ζ + ω∗l ))2.

This definition is required to satisfy 2.3, since by the central axis requirement, the
point ζ + ω∗l is the other preimage in P (under dilation by 2) of the point 2ζ.
Note that these definitions satisfy all the requirements of the Lemma on the two
preimages of C except (4). In particular, since one of the restrictions of star-simple
is that ± 4

9ω
∗
l ∈ C, we have that ± 7

9ω
∗
l is in the component R with star-center ω∗l ,

so that t(ω∗l ) ∈ R for 7
9 < t < 11

9 , establishing condition (3) because of the rapidly
vanishing at the center property of h̃r for 2

3 of the distance from the center to the
edge.

We use a similar technique on other components of P that have the property
that they do not contain any transition points between types of boundary points
with hr = 2 and hr = 0. These components will come in pairs, like the preimages
of C. We alter the technique used there in two ways: we will start by defining h̃r on
the component with boundary values of 0, rather than on the one with boundary
values of 2, and we scale the maximum value of h̃r on these components, so that its
derivative will be bounded even if we have an infinite number of components. Thus,
let R is a component of P other than 1

2C, all of whose boundary points have hr = 0,
and let c be a star-center of R. As before, suppose the polar functions ρ = aj(θ)
defined on θj < θ < θj+1 describe successive line segments in the boundary of R−c.
Let s = min{|ζ−c|:ζ∈∂R}

min{|ζ|:ζ∈∂ 1
2 C} , and define

h̃r(ζ − c) = h̃r(ρ, θ)(2.8)

=


2sfr,1,0( ρ

aj(θ) )
(
f
1,

θj+θj+1
2 ,θj

(θ)
(
fr,1,0( ρ

aj−1(θ) )− 1
)

+ 1
)

if θj ≤ θ ≤ θj+θj+1
2

2sfr,1,0( ρ
aj(θ) )

(
f
1,

θj+θj+1
2 ,θj+1

(θ)
(
fr,1,0( ρ

aj+1(θ) )− 1
)

+ 1
)

if θj+θj+1
2 ≤ θ < θj+1.
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On the corresponding components where all of the boundary points have hr = 2,
we again use (2.7) (as we must).

Finally, we define h̃r on a componentR of P ◦ that contain both boundary points
with hr = 0 and boundary points with hr = 2. Again, we will define these functions
in polar coordinates with respect to a star-center c. We define h̃r =

√
2 at this star

center. On any sectors between the midpoint of a boundary line segment and its
end, where values on the boundary segment are constantly 0 with no jump at the
endpoint, we use (2.8) scaled by s = 1√

2
. On any such sectors where values on the

boundary segment are constantly 2 (again with no discontinuity at the endpoint)
we use (2.7). Now, let θ = q give a point of discontinuity of h on the boundary, and
let the adjacent boundary component where h = 0 be given by r = a1(θ) defined
on θ1 ≤ θ ≤ q. We will use our function f1,α,β to make a transition between the
value

√
2 near the center, and the required 0 at the boundary. The transition will

begin at a distance ρ = ρc(θ) from the center, where ρc is a1(q) at θ = q and 0 at
θ = θ1+q

2 . To make the transition point along a C∞ curve, we again use f1,α,β .

(2.9) ρc(θ) = a1(q)f1,
θ1+q

2 ,q
(θ)

Using this as the transition point, we get the following formula for h̃r:

(2.10) h̃r(ζ − c) = h̃r(ρ, θ) =
{ √

2 if ρ ≤ ρc(θ)√
2f1,a1(θ),ρc(θ)(ρ) if ρ > ρc(θ)

We define h̃r on the h = 2 side of the discontinuities using (2.7). With this, we have
a function h̃r on all of S1 that satisfies Theorem 2.1 as well as conditions (1)-(3) of
the Lemma.

To finish the definition of hr, we will alter h̃r in such a way to satisfy condition
(4) as well. To this end, we let R = S1 ∩{ζ : |ζ− 1

3ω
∗
l | < 1

12}, and define a function
γ(ρ, θ) on R − c with c = 1

3ω
∗
l using (2.6). In this case, some of the boundary

segments ρ = aj(θ) may be segments of circles, but the construction works the
same. We use an analogous definition on R = S1 ∩ {ζ : |ζ + 1

3ω
∗
l | < 1

12}. We then
define hr as follows:
(2.11)

hr(ζ) =


1
2 h̃r(ζ)γ(ζ) if ζ ∈ S1 ∩ {ζ : |ζ ± 1

3ω
∗
l | < 1

12}√
4− ( 1

2 h̃r(ζ − ω∗l )γ(ζ − ω∗l ))2 if ζ ∈ S1 ∩ {ζ : |ζ ± 1
3ω

∗
l | < 1

12}+ ω∗l
h̃r(ζ) else

Since we have ± 2
9ω

∗
l ∈ C, this alteration does satisfy condition (4) of the

Lemma, while retaining conditions (1)-(3) and the orthonormality condition (2.3).
We have hr nonzero on P except for a set of measure 0 since h̃r is 0 only on the
boundary, and we have added only two zero points at ± 1

3ω
∗
l .

It remains to define the filter gr on S1. To first define gr on P , we note
that because of the consistency equation and the central axis requirement, we have
exactly two preimages of each point in S1 that lie in P , and these two preimages
have a constant difference of ω∗l . Thus, the orthonormality condition (2.5) has two
nonzero terms on the right hand side whose arguments differ by a constant, and
therefore relates gr to hr in an analogous way to the classical one-dimensional filter
equation. Thus we are able to use a modification of the classical definition of gr
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from hr, that is

(2.12) gr(ζ) = eπi〈ζ,ω∗l 〉/‖ω∗l ‖
2
hr(ζ + ω∗l ),

This definition will satisfy (2.4) and (2.5) exactly as the corresponding definition
does in the classical case, and will satisfy the requirements of the Lemma because
hr does. To complete the definition of gr, we extend the definition above to S1 \P
in a C∞ manner, so that |gr| ≡ 2 on S1 \ P .

�

We now use the periodizations of these functions hr and gr together with The-
orem 2.1 to construct our Parseval wavelet.

Theorem 2.3. Given any wavelet set for dilation by 2 in L2(R2) whose mul-
tiplicity function satisfies m ≤ 1 and which has central-axis star-simple support,
there exists a Parseval wavelet ψr, for each integer r ≥ 1, with the same multi-
plicity function as the wavelet set, and such that ψr ∈ Cr and ζrψr(ζ) → 0 as
ζ →∞.

Proof. Let φr and ψr be defined from hr and gr by Theorem 2.1. As our first
step, we will show that in spite of the discontinuities of hr, we have that the infinite
product φ̂r(ζ) =

∏∞
k=1

1
2hr( ζ

2k ) is a C∞ function for any r ≥ 1. Fix an r ≥ 1 and
write φ̂r(ζ) = T1(ζ)T2(ζ), where T1 is a finite product of dilates of hr, and the
remaining infinite product T2 is the same as φ̂r defined on a fixed neighborhood N
of 0 that is inside 1

2C. (If ζ ∈ N , we take T1(ζ) = 1.) We will establish first that
T2 is C∞, and then that T1 is as well.

Note that hr has no discontinuities inside of N and thus is C∞ with bounded
partial derivatives of all orders there. Recall also, that by its construction in Lemma
2.2, there is a neighborhood of 0 on which hr satisfies |hr(ζ)− 2| < |ζ|, and also for
each partial differentiation operator (of any order) D, there is a neighborhood of 0
such that |Dhr(ζ)| < |ζ|. Thus we have that the sequence of partial products of T2,
as well all the sequences of any given partial derivative of these partial products, are
uniformly Cauchy, with the difference between the nth and mth elements bounded
by a constant times

∑m
j=n

1
2j . Thus each of these sequences converge uniformly to

a continuous function, and T2 ∈ C∞.
The infinite differentiability of T1 follows from the fact that whenever hr has a

point p of discontinuity, that point is on the boundary of S1. Thus p
2 is either again

on the boundary of S1, or on the boundary of P in the interior of S1. After a finite
number of steps, the latter must be the case. Since h is 0 with all derivatives also
0 at such points, this factor cancels out the discontinuity of the previous terms.
This is true even if p was a transition between the two types of boundary points,
since by construction in Lemma 2.2, the size of the kth order partial derivatives of
hr at a distance d from p is on the order of 1

dk . This is cancelled out by the next
factor hr(p

2 ), since by the third requirement of star-simple central-axis support, p
2

is in ∂P ∩ S◦1 , where all partial derivatives approach 0 faster than any polynomial.
Thus the function φ̂r ∈ C∞. Note that the above argument also shows that φ̂r has
value 0 and partial derivatives of all orders equal to 0 on the periodization of the
boundary of S1. This implies that ψ̂r is also C∞, since the only discontinuities of
gr occur at the boundary of S1, and these will be cancelled by multiplication by φ̂.

Next we show that ζr+1φ̂r(ζ) → 0 and ζD(φ̂r)(ζ) → 0 as ζ → ∞, where D
represents a partial differentiation of any order less than or equal to r. It will
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then follow that ψ̂r will satisfy these same properties, and thus that ψr ∈ Cr and
ζrψr(ζ) → 0 as ζ →∞.

We first note that the central axis requirement on S1 implies that support
of φ̂r is contained in one of the four sets {(x, y) : |x| ≤ 1

2}, {(x, y) : |y| ≤ 1
2},

{(x, y) : |y − x| ≤ 1
2} or {(x, y) : |y + x| ≤ 1

2}, depending on the central axis of S1.
For example, in the case where the central axis is the y axis, the support of the
periodization of hr excludes the set { 1

4 < |x| ≤ 1
2}. But then 2k{ 1

4 < |x| ≤ 1
2} must

be excluded from the support of φ̂r(ζ) =
∏∞

k=1
1
2hr( ζ

2k ) for all k ≥ 1, from which
the claim follows for this case. The other cases are similar.

As a consequence, there exists a constant k0 such that for any ζ ∈ support(φ̂r),
and for all k > k0, the distance of ζ

2k from the central axis is less than the minimum
of ε1 (in the definition of star-simple central-axis support), ε2 and ε3 (in Lemma
2.2), and .2 (to insure that a distance of 1

18 from ω∗l along the central axis will
give no more than a distance of 1

4 from ω∗l to a corresponding point on the edge
of the neighborhood). We call this neighborhood of the central axis N . As argued
above, the unbounded derivatives of a factor of hr(p), for p a transition point, are
cancelled out by the next factor hr(p

2 ). Thus we know that partial derivatives of
all orders of

∏k0+1
k=1

1
2h(

ζ
2k ) are bounded, with a uniform bound depending on k0.

Since
∏k0+1

k=1
1
2h(

ζ
2k ) is also itself bounded by 1, without loss of generality, we may

assume that ζ itself is in the neighborhood N . (We lose at most a fixed ratio 2k0+1

in our estimate of the size of ζ, which becomes insignificant as ζ →∞.)
Define t(ζ) by |ζ−t(ζ)ω∗l | = min{|ζ−tω∗l | : t ∈ R}. We divide [−1, 1), the range

of t(ζ) taken mod 2, into two regions. (We consider t(ζ) mod 2 rather than mod
1 since it defines the multiple of ω∗l , which is a 1

2 point.) Region 1 consists of the
three intervals (mod 2) given by

(
[ 89 , 1) ∪ [−1,− 8

9 )
)
∪ [ 29 ,

4
9 )∪ [− 4

9 ,−
2
9 ). When t(ζ)

is in Region 1, Lemma 2.2 implies that |hr(ζ)| < |ζ − cω∗l |r+2, where c = 1 or ± 1
3

is the center of the appropriate interval in Region 1. We define Region 2 to be the
remaining three intervals of [−1, 1), namely [− 2

9 ,
2
9 ) ∪ [ 49 ,

8
9 ) ∪ [− 8

9 ,−
4
9 ). Note that

the centers of these intervals, 0 and ± 2
3 are twice the centers of the intervals in

Region 1. We have

(2.13) t

(
ζ

2

)
=

{
t(ζ)
2 mod 2 if [|ζ|] ∈ 2Z

t(ζ)
2 + 1 mod 2 if [|ζ|] ∈ 2Z + 1

(where [|ζ|] denotes the greatest integer in |ζ|.) Thus for a point with t(ζ) in
Region 2, ζ → ζ

2 either takes t(ζ) to a point in Region 1 that is half the distance
from the center of its interval, or to a point in Region 2 that is half the distance
from the center of its interval. Therefore, every time t( ζ

2k ) lands in Region 1, we
have |h( ζ

2k )| < 1
4j(r+2) , where j is the number of times t( ζ

2n ) landed in Region 2
since the last time it landed in Region 1. For a point with t(ζ) in Region 1, ζ → ζ

2
takes t(ζ) farther away from the center, so we start over in measuring the degree
of closeness. The pattern will continue until | ζ

2k | < 1
8 , at which point t( ζ

2k ) can
no longer get close to one of the centers. In the worst case, Regions 1 and 2 will
alternate as ζ

2k moves closer to the origin, in which case we will get a factor of 1
4(r+2)

for only every other k. The other factors are bounded by 1. Thus we have

(2.14)
∣∣∣φ̂(ζ)

∣∣∣ < 2−(r+2)([log2(|ζ|)]+2) < |ζ|−(r+2),
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which establishes that ζr+1φ̂r(ζ) → 0 as ζ →∞.

We use a similar technique to estimate the size of a partial derivative D(φ̂r)(ζ)
of order s ≤ r. For any ζ, we let k(ζ) = min{k : | ζ

2k | < 1
8}. By induction we

see that D
∏k(ζ)−1

k=1
1
2h(

ζ
2k ) has (k(ζ) − 1)s < (log2(|ζ|) + 3)s terms, each of which

has the sum of the orders of the derivatives represented equal to s. If we let M
be the maximum value of all derivative of h of order less than or equal s in our
neighborhood N of the central axis, then by an argument similar to that above, we
have that ∣∣∣∣∣∣D

k(ζ)−1∏
k=1

1
2
h(

ζ

2k
)

∣∣∣∣∣∣ < (log2(|ζ|+ 3)s

(
M

2

)s

2−2([log2(|ζ|)]+2)

<

(
M(log2(|ζ|+ 3)

2

)s

ζ−2

< ζ−1

for ζ sufficiently large. Using (2.14), and the boundedness of
∏∞

k=k(ζ)
1
2h(

ζ
2k ) and

its derivatives, this establishes ζD(φ̂r)(ζ) → 0 as ζ →∞.
It remains to show that the multiplicity function for ψ is the same as the

original multiplicity function m for the wavelet set wavelet. This requires two
steps. The theorem in [5] that provides the basis for Theorem 2.1, only shows in
general that the the constructed wavelet is obtained from the GMRA determined
by φ, in the sense defined by Zalik [18]. This means only that the wavelet ψ ∈ V1.
We must show that under the current hypotheses, the constructed wavelet is also
associated with the GMRA, so that Vj is the closed linear span of {ψl,k}l<j . The
second issue is that the multiplicity function for the GMRA determined by φ may
in general be a degenerate form of the multiplicity function used to construct the
filters. (An example is given in [5] where this is the case.) We will show that for
the construction in this theorem, however, the multiplicity function is indeed the
same as the multiplicity function for the wavelet set.

To see that ψ is associated with the GMRA determined by φ, we use the
argument in [6, §4, Theorem 4]. For that argument to apply here, we must only
show that Perφ ≡

∑
j∈Z2 |φ̂(ζ + j)|2 is bounded. This follows immediately from

ζφ̂(ζ) → 0, by breaking the sum up into dyadic intervals.
Finally we show that m′ ≡the multiplicity function of the GMRA determined

by φ is the same as m, the multiplicity function determined by the wavelet set
(a.e.). By [2], m′ is the characteristic function of the support of Perφ. Since m and
m′ both take on only the values 0 and 1, it will suffice to show their supports are
the same up to a set of measure 0. To see support(m′) ⊂ support(m), note that if
φ̂(ζ + j) 6= 0 for some j ∈ Z2, then h( ζ

2 + ωl) 6= 0 for some preimage ωl of 0. but
then ζ ∈ S1 = support (m).

To get the opposite containment, suppose φ̂(ζ+ j) = 0 for all j ∈ Z2. We know
support (φ̂) = ∩∞j=1∪k∈Z2 support(h( ·

2j +k)), and by Lemma 2.2, support(h) = P =
S1∩{ζ : 2ζ ∈ S1} (up to a set of measure 0). Thus support(φ̂) = ∩∞j=02

j(∪k∈Z2(S1+
k)). This is exactly the set ∆ defined in [9]. It is shown in [8] and also in [9] (in
the context of the dimension function of a wavelet) that m(ζ) ≤

∑
k∈Z2 χ∆(ζ + k).

Therefore φ̂(ζ + j) = 0 for all j ∈ Z2 implies that m(ζ) = 0.
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�

Remark 2.4. In general we will not have that Perφ or the corresponding Perψ
are bounded away from 0 on their supports. Therefore by [11], the translates of
neither φ nor ψ will form frames for their closed linear spans.

3. Examples

We now use the procedures outlined in the previous section to construct C1

wavelets with C1 transforms based on first the wedding cake wavelet set of [14]
and then the diamond wavelet set of [16]. These wavelet sets are shown in Figure
1 below.

-

3
2

3
2

-1

1

-1 1

-1

1

H.6,.4L

H1.2,.8L

H.4,-.4L

H4�3,4�3L

H-2�3,-2�3L

(a) (b)

Figure 1. The wedding cake wavelet set and the diamond wavelet set.

Example 3.1. Constructed by Dai, Larson and Speegle in [14], the wedding
cake wavelet set (Figure 1(a)), was one of the earliest known examples of wavelet sets
in R2. The support of its multiplicity function, shown in Figure 2(a) below, has the
x-axis as a central axis . The interior of S1 consists of two star-shaped components
(mod 1): one centered at the origin, and the other at the point ω∗l = ( 1

2 , 0). The
set P is in this case 1

2S1 ∪ 1
2S1 + ω∗l , represented by the black and gray regions

respectively in Figure 2(b). The remaining requirements of star-simple, single-axis
support are easily checked; in this case there are four transition points (± 1

4 ,±
1
16 ).

We build the filters h1 and g1 as described in Lemma 2.2. The low-pass filter
h1 will have value 2 at the origin and along the boundary between the gray and
white regions in Figure 2(b); it will be 0 with first partials also equal to 0 at
ω∗l = ( 1

2 , 0) and along the boundary between the black and white regions. Since
h1 is necessarily supported on P , h1 will be discontinuous along the boundary
between gray and white. However, ζ → 1

2ζ takes these discontinuities to points on
the boundary of the black where h1 and its first partials are 0, canceling them out
in the infinite product φ̂. The high-pass filter g1 will have absolute value 2 between
the dotted square and the black region in Figure 2(b) (since this is the region that
is inside S1 but outside P ). Thus g1 will be discontinuous along the dotted lines;
this is cancelled by φ̂, which is 0 there (by h1 being 0 at the boundary between
black and white). The first quadrant of the filter h1 is shown in Figure 3 below.
The discontinuities of h1 along the boundary of 1

2S1 + ω∗l are apparent.
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(a) S1 (b) P = 1
2S1 ∪ 1

2S1 + ω∗l

Figure 2. The support of the multiplicity function and of the
low-pass filter h1 for the wedding cake set construction.
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1
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1

1

Figure 3. The first quadrant graph of the filter h1 on the wedding
cake wavelet set

As described in Section 2, the function φ̂1(ζ) =
∏∞

k=1
1
2h1( ζ

2k ) smooths out the
discontinuities of h1 to create the C1 function shown below in Figure 4.

Example 3.2. We now apply the procedure of Section 2 to construct a C1

wavelet with C1 transform based on the diamond wavelet set of [16]. This wavelet
set, shown in Figure 1(b), has the property that it is a finite union of convex
polygons. Again the interior of the support of the multiplicity function has just two
connected components, one centered at the origin and the other at ω∗l = ( 1

2 ,
1
2 ). (See

Figure 5(a).) Figure 5(b) shows P = 1
2S1∪ 1

2S1 +ω∗l in black and gray respectively.
In this case, the central axis is the line y = x, and four transition points occur at
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Figure 4. The first quadrant graph of φ̂1 for the wedding cake set.

±(.2, .3) and ±(.3, .2). Just as in Example 1, we will have h1 discontinuous on the
boundary between gray and white, and g1 discontinuous along the dotted line.
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Figure 5. The support of the multiplicity function and of the low
pass filter h1 for the diamond wavelet set construction.

Figure 6 below is a graph of the filter h1 for a C1 with C1 transform wavelet on
the diamond wavelet set. To make the shapes clearer by including all of the outer
diamonds, it is graphed on a slightly larger set than one period. The figure shows
the discontinuities at the edges of the outer (gray) diamonds, and also the rapid
change near the transition points.

As guaranteed by Theorem 2.3, we see in Figure 7 that the function φ̂ again
smooths out the filter and is only supported along the central axis. (It is barely
possible to pick out tiny bumps along the line y = x beyond the central spire.)
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Figure 6. A filter on the diamond wavelet set
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Figure 7. φ̂ for the diamond wavelet set
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