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Abstract. Several years ago, D. Dutkay and P. Jorgensen developed the con-
cept of wavelets defined on a σ-finite fractal measure space, developed from an
iterated affine system. They worked out in detail the wavelet and filter func-
tions corresponding to the ordinary Cantor fractal subset of R. In this paper
we examine the construction of Dutkay and Jorgensen as applied to the fractal
measure space corresponding to the Sierpinski gasket fractal. We develop a
variety of high-pass filters, and as an application use the various families of
wavelets to analyze digital photos.

1. Introduction

Two years ago, D. Dutkay and P. Jorgensen introduced the notion of multi-
resolution analysis bases on σ-finite measure spaces built from dilations and trans-
lations on a fractal arising from an iterated affine function system [DJ]. Although
their construction works in a very general setting, the details were mainly worked
out in the one-dimensional setting, in particular for the ordinary Cantor set and
its variants. In the case of the ordinary Cantor fractal, they used Hutchinson mea-
sure H on the inflated fractal measure space R and considered a multiresolution
L2(R,H) constructed from dilation by 3 and integer translation. The self-similarity
of the Cantor set under dilation by 3 gave a polynomial variant of a low-pass filter,
and using “gap-filling” and “detail” high-pass filters allowed them to construct the
wavelet. In further work on the Cantor fractal case, D. Dutkay used the polyno-
mial low-pass filter to construct a probability measure ν on the solenoid Σ3 and a
mock Fourier transform F : L2(R,H) → L2(Σ3, ν), such that Fourier-transformed
version of the dilation operator correpsonded to the shift automorphism on Σ3, and
the translation operator on L2(R,H) corresponded to multiplication operators on
L2(Σ3, ν) [Dut].

In this paper our aim is to study this construction in the case of the right
triangle Sierpinski gasket. Accordingly, we let S0 be the points inside and on the
right triangle with vertices (0, 0), (0, 1), and (1, 0) in R2. Consider the diagonal

dilation matrix A =
(

2 0
0 2

)
. Let

S1 = [A−1(S0 + τ0)] ∪ [A−1(S0 + τ1)] ∪ [A−1(S0 + τ2)],
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where τ0 = (0, 0), τ1 = (1, 0) and τ2 = (0, 1). Proceeding inductively, given Sn, let

Sn+1 = [A−1(Sn + τ0)] ∪ [A−1(Sn + τ1)] ∪ [A−1(Sn + τ2)].

We thus have a nested sequence {Sn}∞n=0 of compact subsets of R2, and we define
the Sierpinski gasket fractal by

S = ∩∞
n=0Sn.

The Sierpinski gasket S satisfies the self-similarity relation

A(S) = S ∪ [S + (1, 0)] ∪ [S + (0, 1)].

The Hausdorff dimension of S is known to be s = log3
log2 . In the usual fashion one

constructs the Hausdorff fractal measure corresponding to this dimension Hs on S
([Hut]), hereafter denoted by H. Note that

H(A−1(S)) =
1
3
H(S) =

1
3
,

and more generally, if E is a Borel subset of S,

H(A−1(E)) =
1
3
H(E).

Figure 1. Sierpinski gasket

Just as in the Dutkay and Jorgensen work on the Cantor set, we will construct
our wavelets not on the Sierpinski gasket itself, but rather on an enlarged fractal
that supports a structure closer to a standard multiresolution analysis. In this
respect, our work differs, for example, from Stricharz’s wavelets for piecewise linear
functions on triangulations of the Sierpinski gasket itself [Str]. In Section 2, we will
describe the enlarged fractal for the Sierpinski gasket, and define the multiresolution
analysis structure supported on it. In Section 3, we will use this multiresolution
analysis to build a parametrized family of filters, and from them, wavelets on our
space. We then go on to apply some of these wavelets to analyze digital photos in
Section 4. We note that it is our use of the enlarged fractal, and thus the inclusion
of ”gap-filling” high-pass filters, that makes our wavelets reasonable candidates for
describing images in L2(R2) rather than just on the fractal itself. The effects that
using this type of wavelet has on image reconstruction will be explored further in
Section 4.
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2. A multiresolution analysis corresponding to the Sierpinski gasket
space

We now recall the σ-finite measure space from which we obtain the dilation
and translation operators to build the promised multiresolution analysis. Define
the inflated fractal set RS associated to the Sierpinski gasket S by

RS = ∪∞
j=−∞ ∪(m,n)∈Z2 [Aj(S + (m,n))].

The probability measure H on S extends to a σ-finite measure that we also call H
on RS . This measure satisfies

H(A−1(E)) =
1
3
H(E),

H(E + (m,n)) = H(E),

for every Borel subset E of RS , and for every (m,n) ∈ Z2. Forming the Hilbert
space L2(RS ,H), we can construct the unitary dilation operator D and a unitary
representation of Z2 on L2(RS ,H) by

D(f)(s, t) =
√

3f(2s, 2t),

and
T(m,n)f(s, t) = f(s−m, t− n).

These operators satisfy a standard commutation relation:

Proposition 2.1. Let D and {T(m,n) : (m,n) ∈ Z2} be the unitary operators
on L2(RS ,H) defined above. Then

T(m,n)D = DT(2m,2n), ∀(m,n) ∈ Z2.

Proof. This is an easy calculation. �

Thus, as in the paper by the third author, L.H. Lim, and K. Taylor, the op-
erators {T(m,n) : (m,n) ∈ Z2} and {Dj : j ∈ Z} generate a representation of the
generalized Baumslag-Solitar group QA � Z. Here the group of generalized A-adic
rationals is defined by

QA = ∪∞
j=0A

−j(Z2),

and the automorphism of Z on QA corresponds to the action of matrix multiplica-
tion by integer powers of A.

We now use the dilation operator D in the standard way to construct a mul-
tiresolution analysis of the Hilbert space L2(RS ,H). Define a closed subspace
V0 ⊂ L2(RS ,H) by

V0 = span{T(m,n)(χS) : (m,n) ∈ Z2}.
Here χS is the characteristic function of the Sierpinski gasket triangle, and corre-
sponds to the scaling function in the standard multi-resolution analysis set-up. The
Sierpinski gasket S satisfies the self-similarity relation

(2.1) A(S) = S ∪ [S + (1, 0)] ∪ [S + (0, 1)],

and up to sets of measure 0, the above union is a disjoint union. It follows that its
characteristic function χS satisfies the dilation equation

(2.2) χS(A−1(s, t)) = χS(s, t) + χS(s− 1, t) + χS(s, t− 1).
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By construction, V0 is invariant under the operators {T(m,n) : (m,n) ∈ Z2}. For
each j ∈ Z, define

Vj = Dj(V0).
We note that

V1 = D(span{T(m,n)(χS) : (m,n) ∈ Z2})
= span{DT(m,n)(χS) : (m,n) ∈ Z2}

= span{T(m/2,n/2)D(χS) : (m,n) ∈ Z2},
and consequently

V0 ⊆ D(V0) = V1.

It follows that the closed subspaces {Vj}∞j=−∞ form an increasing nested sequence
of closed spaces of L2(RS ,H).

The following result shows that the subspaces {Vj}∞j=−∞ form a multiresolution
analysis. The first three items are similar in nature to Proposition 2.8 of [DJ],
although the proof of item (iii) is somewhat different.

Proposition 2.2. Let {Vj}∞j=−∞ be the subspaces of L2(RS ,H) constructed
above, and let D, {T(m,n) : (m,n) ∈ Z2} be the unitary operators constructed in
Proposition 2.1. Then

(i) D−1(χS) = 1√
3
[χS + T(1,0)(χS) + T(0,1)(χS)].

(ii) 〈T(m,n)(χS), χS〉 = δ(m,n),(0,0), (m,n) ∈ Z2.

(iii) ∪∞
j=−∞[Vj ] = L2(RS ,H).

(iv) ∩∞
j=−∞[Vj ] = {�0}.

Proof. The proof of item (i) follows directly from the self-similarity relation of
the Sierpinski gasket S and corresponding dilation equation outlined in Equations
2.1 and 2.2. Item (ii) is done by a similarly easy calculation, noting that translates
of the Sierpinski gasket S by non-zero vectors in Z2 intersect S in sets of H measure
0.

As for item (iii), it will suffice to show that any Hausdorff measurable subset
E ⊂ RS with H(E) <∞ has the property that χE is in the closure of the span of
{DjT(m,n)(χS) | j,m, n ∈ Z}. Since RS = ∪∞

j=−∞ ∪(m,n)∈Z2 [Aj(S + (m,n))], we
can write such a set E = ∪E(j,m,n), where E(j,m,n) = E ∩ [Aj(S + (m,n))]. It is
enough to show that the characteristic function of each set E(j,m,n) is in the closure
of the span, so that by applying dilations and translations, we may without loss of
generality assume that our arbitrary measurable set E ⊂ S.

Let V be the collection of all the lower left vertices of subtriangles in S. By
writing each {�v} ∈ V as a decreasing intersection: {�v} = ∩∞

n=1Tn, where each
Tn is an nth dilate of a translate of S, we see that H({�v}) = limn→∞ H(Tn) =
limn→∞ 1

3n = 0. By countable subadditivity of measures, we then have H(V) = 0.
Now let S ′ = S ∼ V. Then H(S ′) = H(S) = 1. Since S is a metric space, so is S ′,
although S ′ is no longer closed.

Thus, again without loss of generality, we assume that E ⊂ S ′. Let

T = {A−k(S + (i, j)) ∩ S ′ : k ∈ N, (i, j) ∈ {(0, 0), (1, 0), (0, 1)}}.
Then T , which consists of the “sub-Sierpinski gaskets” of S ′, is a semi-algebra of
subsets of S ′; that is, finite disjoint unions of elements fromm T form an algebra
of subsets of S ′. We denote this algebra by A. Applying Hausdorff measure to the
algebra A, we obtain a set-valued function on A, denoted by µ∗, which satisfies the
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conditions of the Carathéodory Extension Theorem. Therefore µ∗ can be extended
to an outer measure on all subsets of S ′, and µ∗ agrees with Hausdorff measure H
on the algebra A by construction. Thus µ∗ determines a σ-algebra M of measurable
sets, which contains the smallest σ-algebra B containing A. If we denote the outer
measure µ∗ restricted to M, now a measure, by µ, recall that (X,M, µ) is a com-
plete measure space. Moreover, since µ∗(S ′) = H(S ′) is finite, the Carathéodory
Extension Theorem tells us this extension of H on A to the smallest σ-algebra
containing A is unique. It follows that µ = H on B, and also on M. The question
that remains is whether or not the σ-algebra that arises when one constructs the
outer Hausdorff measure on subsets of S ′, is larger than the σ-algebra M arising
using the Carathéodory Extension Theorem with the Hausdorff measure µ = H.

Note that the family of sets T , in addition to being a semi-algebra of subsets
of S ′, is a Vitali cover for any subset of S ′, that is, for each x ∈ E and each
δ > 0, there is a subset T ∈ T with x ∈ T and 0 < H(T ) ≤ δ. By [Ed2], p.10,
outer measures constructed using the Carathéodory Extension Theorem from Vitali
covers are metric outer measures, and so satisfy µ∗(A∪B) = µ∗(A)+µ∗(B) for any
subsets A and B with d(A,B) > 0. Furthermore, if ν∗ is a metric outer measure on
a metric space X, then the σ-algebra of measurable sets with respect to this outer
measure contains the σ-algebra of Borel sets of X([Ed1], 5.2.6). We apply this
result to (S ′,M, µ) to deduce that µ∗ is a metric outer measure and M contains
the Borel sets of S ′. Thus, the σ-algebra of measurable sets of S ′ constructed from
µ∗ contains the Borel sets of S ′ and hence the open and closed sets of S ′. It follows
that H agrees with µ on the Borel subsets of S.

Finally, if one constructs a finite measure µ on a set X using a algebra A of
sets using the Carathéodory Extension Theorem, then given any measurable set
G ⊂ X, there exists a element R of A such that µ(G∆R) < ε by Theorem 1.1.9 of
[Ed2].

Applying this last result to our set-up, and the measurable subset E of S ′, we
note that there exists a Fσ-set F ⊂ E with H(E∆F ) = H(E ∼ F ) = 0. We then
deduce that there is a finite collection of finite sub-Sierpinski gasket triangles Ti

n
i=1

from T with µ(F∆ ∪n
i=1 Ti) < ε. Since µ = H on the σ-algebra of Borel sets of

S ′, H(F∆ ∪n
i=1 Ti) < ε. But since H(E∆F ) = 0, we see that H(E∆ ∪n

i=1 Ti) < ε.
Thus, χE is in the closure of the span of {DjT(m,n)(χS) | j,m, n ∈ Z}.

It remains to establish item (iv). Note that if (x, y) ∈ support(f) for f ∈
∩∞

j=−∞Vj , then for each j ∈ Z, (x, y) ∈ Aj(S + (uj , vj)) for some (uj , vj) ∈ Z2. For
j large enough that x2 + y2 < 22j−1, this forces (uj , vj) ∈ {(0, 0), (0,−1), (−1, 0)}
and also forces (uj , vj) to be constant for these j. Thus, (x, y) must be in one of
the nested unions ∪∞

j=−∞A
jS, ∪∞

j=−∞A
j(S + (0,−1)), or ∪∞

j=−∞A
j(S + (−1, 0)).

Since f ∈ V−j must be constant on sets of the form Aj(S + (u, v)), the fact that
each union is nested means that f must be constant on each of these unions. As
the measure of each union is infinite, these constants must all be 0.

�

3. A parametrized family of high-pass filters for the Sierpinski gasket
scaling function

Recall that in the multiresolution analysis we have constructed for L2(RS ,H),

V0 = span{T(m,n)(χS) : (m,n) ∈ Z2},
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and the {T(m,n)(χS)} form an orthonormal basis for V0. Thus there is the standard
isometric isomorphism J : V0 → L2(T2) given by

J(
∑

(m,n)∈Z2

cm,nT(m,n)(χS)) =
∑

(m,n)∈Z2

cm,ne(m,n),

where {cm,n} ⊂ l2(Z) and {e(m,n)(z, w) = zm wn} is the standard orthonormal
basis for L2(T2).

Recall D−1(V0) = V−1 ⊂ V0. It follows that J(V−1) ⊂ L2(T2), and that

J(V0) = J(V−1 ⊕W−1) = J(V−1) ⊕ J(W−1),

where W−1 = V ⊥
−1 ∩ V0. Now we calculate

J(D−1(χS)) = J(
1√
3
[χS + T(1,0)(χS) + T(0,1)(χS)]) =

1√
3
[e(0,0) + e(1,0) + e(0,1)].

This function is our substitute for the low-pass filter, and we denote the above
function by m0, so that

m0(z, w) =
1√
3
[e(0,0)(z, w) + e(1,0)(z, w) + e(0,1)(z, w)].

Our aim is to find functions {ηl : l = 1, 2, 3} ⊂ W−1 such that {T(2m,2n)(ηl) :
l = 1, 2, 3, (m,n) ∈ Z2} form an orthonormal basis for W−1. Note that W0 =
D(W−1). Applying D and using the commutation relation T(m,n)D = DT(2m,2n),

the functions ψk = D(ηk) will be our wavelet family for L2(RS ,H), since it will
then follow that

∪3
l=1{T(m,n)(ψl) : (m,n) ∈ Z2} = ∪3

l=1{DT(2m,2n)(ηl) : (m,n) ∈ Z2}
will give an orthonormal basis for W0.

Using the fact that J is a unitary isomorphism from the Hilbert space W−1

into L2(T), we let ml = J(ηl), l = 1, 2, 3. Part of the problem then comes down to
computing when

{z2mw2nml(z, w) : (m,n) ∈ Z2}
is an orthonormal set in L2(T2).

Lemma 3.1. Let f be an element of L2(T2). Then the collection of functions
{z2mw2nf : (m,n) ∈ Z2} forms an orthonormal set in L2(T2) if and only if

1∑
j=0

1∑
k=0

|f(zeπij , weπik)|2 = 4.

Proof. The proof comes down to a simple calculation involving Fourier coef-
ficients and the inner products 〈f, z2mw2nf〉, (m,n) ∈ Z2, which we leave to the
reader. �

Lemma 3.2. Suppose that f is as in Lemma 3.1. Then a function g ∈ L2(T2)
is orthogonal to every function z2mw2nf if and only if

1∑
j=0

1∑
k=0

f(zeπij , weπik)g(zeπij , weπik) = 0, a.e. on T2.

Proof. Again the proof involves calculations of Fourier coefficients and inner
products defined by integrals, and is left to the reader. �
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This leads us to the following result, which summarizes a special case of results
from [BCM02].

Proposition 3.3. (c.f. [BCM02]) Let m0 = 1√
3
[e(0,0) + e(1,0) + e(0,1)] be

the “mutant” low-pass filter on T2 defined earlier, and let m1, m2, m3 ∈ L2(T2).
Then {ψl = D(J−1(ml) : l = 1, 2, 3} is a wavelet family for L2(RS ,H) if and only
if the functions {ml} satisfy:

(3.1)
1∑

j=0

1∑
k=0

|ml(zeπij , weπik)|2 = 4 a.e. on T2.

(3.2)
1∑

j=0

1∑
k=0

ml(zeπij , weπik)ml′(zeπij , weπik) = 0, l �= l′,

and

(3.3)
1∑

j=0

1∑
k=0

m0(zeπij , weπik)ml(zeπij , weπik) = 0, l = 1, 2, 3.

We now use a proposition based in linear algebra that has been used to create
polynomial high-pass filters from polynomial low-pass filters as far back as 1992,
by R. Gopinath and C. Burrus [GB].

Theorem 3.4. (c.f. [GB]) Let �v0 = ( 1√
3
, 1√

3
, 1√

3
, 0), �v1 = (a(0,0), a(1,0), a(0,1), a(1,1)),

�v2 = (b(0,0), b(1,0), b(0,1), b(1,1)) and �v3 = (c(0,0), c(1,0), c(0,1), c(1,1)) be vectors in C4

such that {�v0, �v1, �v2, �v3} forms an orthonormal basis for C4. Then setting

m1 =
2∑

j=0

2∑
k=0

a(j,k)e(j,k),

m2 =
2∑

j=0

2∑
k=0

b(j,k)e(j,k),

and

m3 =
2∑

j=0

2∑
k=0

c(j,k)e(j,k),

the functions m1, m2, and m3 satisfy Equations 3.1,3.2, and 3.3 with respect to
m0, so that {ψl = D(J−1(ml)) : l = 1, 2, 3} is a wavelet family for L2(RS ,H).

Proof. Since the set {�v0, �v1, �v2, �v3} forms an orthonormal basis for C4, the
4 × 4 matrix

M =




1/
√

3 1/
√

3 1/
√

3 0
a(0,0) a(1,0) a(0,1) a(1,1)

b(0,0) b(1,0) b(0,1) b(1,1)

c(0,0) c(1,0) c(0,1) c(1,1)




is unitary, as its rows form an orthonormal set. For z = e2πis and w = e2πit, let
�v(z, w) denote the row vector consisting of the following functions from C(T2) :
(e(0,0), e(1,0), e(0,1), e(1,1)). Now note that ml(t) = �vl · �v(z, w), l = 0, 1, 2, 3. where
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the “·” denotes dot product. We first verify that Equation 3.1 holds for m1; the
proof for m2 and m3 will be identical.

1∑
j=0

1∑
k=0

|m1(zeπij , weπik)|2 =

=
1∑

j=0

1∑
k=0

(a(0,0) + a(1,0)ze
πij + a(0,1)we

πik + a(1,1)zwe
πi(j+k))

(a(0,0) + a(1,0)zeπij + a(0,1)weπik + a(1,1)zweπi(j+k))

= 4|a(0,0)|2+a(0,0)[a(1,0)z

1∑
j=0

1∑
k=0

e−πij+a(0,1)w

1∑
j=0

1∑
k=0

e−πik+a(1,1)zw

1∑
j=0

1∑
k=0

e−πi(j+k)]

+4|a(1,0)|2+a(1,0)z[a(0,0)

1∑
j=0

1∑
k=0

eπij+a(0,1)w

1∑
j=0

1∑
k=0

eπi(j−k)+a(1,1)zw

1∑
j=0

1∑
k=0

e−πik]

+4|a(0,1)|2+a(0,1)w[a(0,0)

1∑
j=0

1∑
k=0

eπik+a(1,0)z

1∑
j=0

1∑
k=0

eπi(k−j)+a(1,1)zw

1∑
j=0

1∑
k=0

e−πij ]

+4|a(1,1)|2+a(1,1)zw[a(0,0)

1∑
j=0

1∑
k=0

eπi(j+k)+a(1,0)z
1∑

j=0

1∑
k=0

e−πik+a(0,1)w
1∑

j=0

1∑
k=0

e−πij ].

Repeatedly using the trivial equality

(3.4)
1∑

j=0

e±πij = 0,

we see that
1∑

j=0

1∑
k=0

|m1(zeπij , weπik)|2 = 4|a(0,0)|2 + 4|a(1,0)|2 + 4|a(0,1)|2 + 4|a(1,1)|2 = 4.

With this and the identical calculations for m2 and m3, we have established Equa-
tion 3.1.

The proofs of the other two equations make similar use of 3.4. For example, to
establish the l = 1 case of Equation 3.3 we calculate that

1∑
j=0

1∑
k=0

m0(zeπij , weπik)m1(zeπij , weπik)

=
1∑

j=0

1∑
k=0

(
1√
3
+

1√
3
zeπij+

1√
3
weπik)(a(0,0) + a(1,0)zeπij + a(0,1)weπik + a(1,1)zweπi(j+k))

= 4
1√
3
a(0,0) + 4

1√
3
a(1,0) + 4

1√
3
a(1,0)

= 4�v0 · �v1 = 0.

We leave the remainder of the details to the reader. �
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It follows from the above theorem that modulo permuting the wavelets, one
can parametrize wavelet bases corresponding to the scaling function χS by ordered
families of orthonormal bases for the orthogonal complement of {( 1√

3
, 1√

3
, 1√

3
, 0)}

in R4, or in C4 if we include complex linear combinations of dilates and translates
of χS as our wavelets. These correspond to a parametrization by O(3,R) or by
U(3,C), respectively. We thus have a concrete way to construct high-pass filters
associated to m0, and we now give some examples corresponding to the case where
�v1 = (0, 0, 0, 1).

Example 3.5. Let �v1 = (a(0,0), a(1,0), a(0,1), a(1,1)) = (0, 0, 0, 1); then the asso-
ciated filter function is

m1(z, w) = zw.

This corresponds to the “gap-filling wavelet” in the discussion of the Cantor set
wavelets given in [DJ].

For this choice of m1, we now give a family of high-pass filters {m2,m3} para-
metrized by a circle. We first need to find unit vectors �v2 = (b(0,0), b(1,0), b(0,1), 0)
and �v3 = (c(0,0), c(1,0), c(0,1), 0) that are orthogonal to �v0 = ( 1√

3
, 1√

3
, 1√

3
, 0) and

to one another. If we just want real coefficients for our polynomials, this corre-
sponds to finding (x, y, z) with x2 + y2 + z2 = 1 and 1√

3
x + 1√

3
y + 1√

3
z = 0, i.e.

x + y + z = 0. The plane x + y + z = 0 intersects the sphere x2 + y2 + z2 = 1
in a circle. So suppose we have (x, y, (−x − y)) with x2 + y2 + xy = 1

2 . Let
�v2 = (x, y, (−x − y), 0) = (b(0,0), b(1,0), b(0,1), 0). Then there will be a two choices
of �v3 = (c(0,0), c(1,0), c(0,1), 0) lying on the desired circle (hence a unit vector that
is perpendicular to �v1 and is also perpendicular to �v2. The vectors �v2 and �v3 cor-
respond to the detail wavelets. We see these are parametrized by the Cartesian
product of the circle formed from the intersection of the sphere x2 + y2 + z2 = 1
and the plane x+ y + z = 0 and the two point space {1,−1}.

We parametrize the family of possible {�v2} by using the angular variable θ :
We can have

�v2 =
1√

2 + sin 2θ
(cos θ, sin θ,−

√
2 sin (θ +

π

4
), 0), θ ∈ [−π, π).

For each choice of �v2, we have two possible choices of �v3 : one continuously para-
metrized choice is

�v3 =
1√

6 + 3 sin 2θ
(
√

5 sin (θ + α),−
√

5 cos (θ − α),
√

2 cos (θ +
π

4
), 0),

for θ ∈ [−π, π), and where α = arcsin 1√
5
. Then

m2(z, w) = �v2 · (e(0,0), e(1,0), e(0,1), e(1,1)) =
cos θ + sin θz −

√
2 sin (θ + π

4 )w√
2 + sin 2θ

,

and

m3(z, w) = c(0,0) + c(1,0)z + c(0,1)w,

where c(0,0), c(1,0) and c(0,1) are the components of �v3 parametrized above. For
example, taking θ = −π

4 , we would have m2(z, w) = 1√
2
− 1√

2
z corresponding

to the choice of vector �v2 = ( 1√
2
,− 1√

2
, 0, 0). Then the possible choices of �v3 are
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�v3 = (−1√
6
, −1√

6
, 2√

6
, 0), (corresponding to the parametrization given by θ above) or

�v3 = ( 1√
6
, 1√

6
, −2√

6
, 0). In the first case we have

m3(z, w) = − 1√
6
− z√

6
+

2w√
6
.

In the second case we have

m3(z, w) =
1√
6

+
z√
6
− 2w√

6
.

Our wavelet family for the first choice of m3 is given by ψi = D(J−1(mi)) so
that

ψ1 = D(T(1,1)χS),

ψ2 =
1√
2
D(χS − T(1,0)χS),

ψ3 =
1√
6
D(−χS − T(1,0)χS + 2T(0,1)χS).

�

�

√
3

(0,0) (1,0)

(0,1)

(a) ψ1

�

�

√
3√
2

−√
3√

2

(0,0) (1,0)

(0,12 )

(b) ψ2

�

�
−1√

2

√
2

−1√
2

(0,0) (1,0)

(0,1)

(c) ψ3

Figure 2. Wavelets of Example 3.5

The right triangles in the graphs of Figure 2 represent the sub-Sierpinski gaskets
obtained by dilation of χS and associated translates in the construction of ψi.

Example 3.6. (The D’Andrea Code) We now do an example with complex
coefficients. It has the benefit that the non-zero coefficients in the �v2 and �v3 have
the same modulus, thus giving a certain symmetry to the detail wavelets. This
cannot be achieved in the parametrization with real coefficients given above. We
still take m1(z) = zw corresponding to the gap-filling wavelet but for the choice of
detail wavelets we use complex coefficients for the �vi, i = 2, 3. In particular, setting
λ = e

2πi
3 we let

�v2 = (
1√
3
,
λ√
3
,
λ2

√
3
, 0)

and

�v3 = (
1√
3
,
λ2

√
3
,
λ√
3
, 0),

and check that the hypotheses of Theorem 3.4 hold.



SIERPINSKI GASKET 11

In this case, we get

m1(z, w) = zw, m2(z, w) =
1√
3
[1 + λz + λ2w],

and
m3(z, w) =

1√
3
[1 + λ2z + λw],

so that the wavelet family is given by

ψ1 = D(T(1,1)χS),

ψ2 =
1√
3
D(χS + λT(1,0)χS + λ2T(0,1)χS)

and
ψ3 =

1√
3
D(χS + λ2T(1,0)χS + λT(0,1)χS).

�

�

√
3

(0,0) (1,0)

(0,1)

(a) ψ1

�

�1

λ2

λ

(0,0) (1,0)

(0,1)

(b) ψ2

�

�1

λ

λ2

(0,0) (1,0)

(0,1)

(c) ψ3

Figure 3. Wavelets of Example 3.6

4. Discrete Sierpinski gasket wavelet transform and image compression

In this section we will describe a discrete fractal wavelet transform based on
the Sierpinski gasket space, using the filters of Examples 3.5 and 3.6. We will then
apply this transform to images in L2(R2), and analyze how the results compare to
those using the Haar wavelet, which is also discontinuous. For our Sierpinski gasket
wavelet transform (DSGWT), we will use the same algorithm as the discrete Haar
wavelet transform (DHWT), altering only the low and high-pass filters which are
used. Thus, we begin by briefly describing the Haar wavelet and the DHWT.

The Haar scaling function and wavelet on L2(R2) are given by

ϕ = χQ,

ψ1 =
1
2
D(T(0,0)χQ + T(1,0)χQ − T(0,1)χQ − T(1,1)χQ),

ψ2 =
1
2
D(T(0,0)χQ − T(1,0)χQ + T(0,1)χQ − T(1,1)χQ),

ψ3 =
1
2
D(T(0,0)χQ − T(1,0)χQ − T(0,1)χQ + T(1,1)χQ),
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where Q = [0, 1) × [0, 1), and where

D(f)(s, t) = 2f(2s, 2t),

and
T(m,n)f(s, t) = f(s−m, t− n)

are the unitary operators on L2(R2) analogous to the operators of the same name
that were defined in Section 2 on L2(RS ,H).

�

�

1 1

−1 −1

(0,0) (1,0)

(0,1)

(a) ψ1

�

�

1 −1

1 −1

(0,0) (1,0)

(0,1)

(b) ψ2

�

�

1 −1

−1 1

(0,0) (1,0)

(0,1)

(c) ψ3

Figure 4. Haar wavelets on L2(R2)

The scaling function ϕ defines a multiresolution analysis of L2(R2) in the usual way
with

Vj = span{DjT(m,n)(ϕ) : (m,n) ∈ Z2}.
Also in the usual way, if we let Wj be defined by Vj+1 = Vj ⊕Wj , then

∪3
i=1{DjT(m,n)(ψi) : (m,n) ∈ Z2}

forms an orthonormal basis of Wj .
The Haar scaling function and wavelet can be constructed from filters which

can in turn be described by unit vectors in R4 in a similar fashion to the Sierpinski
wavelets of the previous section. The Haar low-pass filter is described by the unit
vector,

�v0 = (
1
2
,
1
2
,
1
2
,
1
2
),

and high-pass filters by the unit vectors

�v1 = (
1
2
,
1
2
,
−1
2
,
−1
2

),

�v2 = (
1
2
,
−1
2
,
1
2
,
−1
2

),

and

�v3 = (
1
2
,
−1
2
,
−1
2
,
1
2
).

We consider a 2n × 2n pixel grayscale image, supported on the unit square, as
a function in Vn, and represent it by a 2n ×2n matrix B whose entries are intensity
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B �

d1
1

d3
1d2

1

a1

2n × 2n grayscale matrix B Transform coefficient matrix C

Figure 5. representation of 2 × 2 sub-matrix decomposition

values. The DHWT allows us to decompose B in the following manner. We take a
2 × 2 sub-matrix of B and write it as a column vector,

(
bi,j bi,j+1

bi+1,j bi+1,j+1

)
�




bi+1,j

bi+1,j+1

bi,j
bi,j+1


 = �bij .

Multiplication by the matrix M , whose rows are the filters �v0, �v1, �v2, and �v3 (as in
the proof of Theorem 3.4), yields the column vector,

�cij = M�bij =




�v0
�v1
�v2
�v3


�bij =




a i+1
2 , j+1

2

d1
i+1
2 , j+1

2

d2
i+1
2 , j+1

2

d3
i+1
2 , j+1

2


 ,

whose entries are transform coefficients a, d1, d2, and d3 which are stored in the
matrix C. Since B was chosen to be a 2n × 2n matrix, the indices (i, j) on �b and
�c are always both odd. The indices on the entries of �c are the positions of these
values in the 2n−1×2n−1 sub-matrices of C of the same name depicted in Figure 5.
Hence, transform coefficients, corresponding to an original 2 × 2 block in B, have
the same relative position in their respective sub-matrix of C, (either a1, d

1
1, d

2
1, or

d3
1,) as the position of the original 2 × 2 block in B.

This describes a standard algorithm for computing the transform coefficients
in a discrete setting based on the Haar wavelet family using nothing more than
matrix multiplication. If we renormalize the unit square to a 2n × 2n matrix of
pixels and note that the matrix uses column information for the x shift and row
information for the y shift, then the transform coefficients correspond to standard
inner products in L2(R2) given by,

a i+1
2 , j+1

2
= 〈f,Dn−1T( j−1

2 ,2n−1− i+1
2 )(ϕ)〉,

d1
i+1
2 , j+1

2
= 〈f,Dn−1T( j−1

2 ,2n−1− i+1
2 )(ψ1)〉,

d2
i+1
2 , j+1

2
= 〈f,Dn−1T( j−1

2 ,2n−1− i+1
2 )(ψ2)〉,
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and
d3

i+1
2 , j+1

2
= 〈f,Dn−1T( j−1

2 ,2n−1− i+1
2 )(ψ3)〉.

Note that these are the coefficients of the basis functions in the decomposition of

f ∈ Vn = Vn−1 ⊕Wn−1

on the support of f corresponding to the original 2 × 2 block in B. Hence,

f|E = Dn−1T( j−1
2 ,2n−1− i+1

2 )(aϕ+ d1ψ1 + d2ψ2 + d3ψ3),

where E is the support of the original 2 × 2 block in B, (we have suppressed the
indices on the coefficients a, d1, d2, and d3). In this manner we decompose B into
C, which consists of the sub-matrices a1, d

1
1, d

2
1, and d3

1, as shown in Figure 5 (with
the subscripts indicating that we have performed one level of decomposition).

d2
2 d3

2

d1
2

d1
1

d3
1d2

1

a2

(a) 2-Level decomposition (b) Haar filter

(c) Filter of Example 3.5 (d) Filter of Example 3.6

Figure 6. (a) 2-level coefficient decomposition scheme; (b)-(d)
decomposed butterfly using various filters.
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We can continue decomposing f by transforming the sub-matrix a1 of C, achiev-
ing a second level of decomposition shown in Figure 6. This is analogous again to
the decomposition of Vn as seen by

Vn = Vn−2 ⊕Wn−2 ⊕Wn−1.

Note that in this case, the entries in a2 are the coefficients of the basis elements of
Vn−2 for this representation of f. The entries of the detail matrices dk

2 , k = 1, 2, 3,
are the coefficients of the basis elements of Wn−2 corresponding to the appropriate
translation and dilation of ψk respectively for this representation of f. Similarly,
dk
1 , k = 1, 2, 3, correspond to Wn−1. Since f ∈ Vn, we can perform n such decom-

positions by successive iterations on Vj for j = 1, ..., n yielding,

Vn = V0 ⊕ (⊕n−1
j=0Wj).

Note that the sub-matrix an consists of a single entry, which is the coefficient of
ϕ. For further details regarding the Haar wavelet family and its discrete wavelet
transform see [Mal99].

We have detailed the DHWT because of its familiarity and because the al-
gorithm and theory just described are essentially the same for the DSGWT. We
need only change the filters, �vi for i = 0, 1, 2, 3, to those described in Section 3.
Recall that for Examples 3.5 and 3.6 this means that �v0 = ( 1√

3
, 1√

3
, 1√

3
, 0) and

�v1 = (0, 0, 0, 1). If we consider our matrix B as the discretization of a function
f ∈ L2(RS ,H), then this approximation to f lives in Vn of the multiresolution on
L2(RS ,H) described in Section 2, and everything we just said about the DHWT
still applies to the DSGWT substituting L2(RS ,H) in place of L2(R2). If however
we keep B as the discretization of a function f ∈ L2(R2) there is nothing preventing
us from using the DSGWT to decompose f. Essentially, we are then treating level
n Sierpinski gaskets as pixels. Since the transform relies on the fact that M is uni-
tary we are just reorganizing the information provided in B into a new coefficient
matrix C. But now our coefficients no longer match up nicely to the standard inner
product on L2(R2) of f with the appropriate basis elements since the measures on
RS and R2 are different, i.e., if the unit square Q ∈ R2 is represented by a 2 × 2
matrix then a single entry of this matrix corresponds to an area of 1

4 under the R2

Lebesgue measure whereas a single entry of this matrix under the fractal measure
H corresponds to an area of 1

3 since it is one-third of the discretized unit Sierpinski
gasket. This technicality does not affect the implementation of the DSGWT on a
given matrix regardless of one’s point of view.

Figure 6 shows two levels of decomposition of a 512 × 512 grayscale image
(butterfly of Figure 7a) into transform coefficient matrices, which have also been
visualized as grayscale images. These transform matrices illustrate the desirability
of using certain wavelets in image compression. Grayscale intensity values take on
values between zero (black) and one (white). The large amounts of black or near
black areas of these transform matrices are entries which are nearly zero. Trans-
forming the image at different levels amounts to reorganizing the information of the
image with respect to the basis functions of our multiresolution analysis. Under
this reorganization, energy is concentrated in the transform coefficients where the
structure of the image is well-represented by the structure of the basis functions at
a particular level of resolution. Thresholding or quantizing the transform matrices
zeros out a certain number of entries. As long the entries being zeroed out are near
zero, we are only throwing away a small amount of the information contained in
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the transform matrix, and a reasonable reconstruction of the original image can
be obtained. Sparse matrices are easily compressed using various coding schemes
which we do not discuss here. So, if we can represent an image efficiently by basis
functions of a multiresolution analysis, this representation will admit a sparse ma-
trix under thresholding which contains most of the original information and can be
compressed easily. Again, we are taking advantage of image structure being similar
to basis function structure at different levels of resolution.

(a) Original (b) Haar filter

(c) Filter of Example 3.5 (d) Filter of Example 3.6

Figure 7. (a) Original 512 × 512 grayscale image; (b)-(d) recon-
struction using 3% of transform coefficients

Reconstruction of an image from its transform coefficients is accomplished via
an inverse wavelet transform. For our examples this amounts to the matrix multi-
plication,

M∗�c = M∗M�b = �b,



SIERPINSKI GASKET 17

(a) Original (b) Haar filter

(c) Filter of Example 3.5 (d) Filter of Example 3.6

(e) Haar filter (f) Filter of Example 3.5

Figure 8. (a) Original 512 × 512 grayscale image; (b)-(d) recon-
struction using 30% of transform coefficients; (e),(f) using 3% of
transform coefficients
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where M∗ is the adjoint of the filter matrix M defined in the discrete wavelet
transform and �c is a transform coefficient vector of the form,

�c =




a
d1

d2

d3


 .

If �c contains entries from coefficient sub-matrices at the jth level of decomposition
(i.e. from aj , d

1
j , d

2
2, or d3

j ), then the resulting �b obtained from the inverse transform
will be part of the coefficient sub-matrix aj−1. Image reconstruction is perfect
when all of the transform coefficients are kept at all levels. Lossy compression
schemes utilize a quantization or thresholding step to remove a certain percentage
of transform coefficients as previously described. Figures 7 and 8 show 512 ×
512 grayscale images and reconstructed images using 3% or 30% of the transform
coefficients after 9 levels of decomposition.

Note, that for this lossy scheme, the DSGWT doesn’t concentrate energy in
the transform coefficients of Figure 7 as well as Haar because the structure of the
butterfly image isn’t well correlated to the structure of the Sierpinski gasket on any
level. The result is that the Haar transform outperforms the gasket transform in
this task. In particular, upon closer inspection we see that the ‘gap’ coefficients,
those detail coefficients computed from the filter associated with the “gap-filling
wavelet” ψ1, produced by the DSGWT are merely being rearranged from B to d1

1

in C and from aj to d1
j+1 at each level of the transform process. This is easily seen

in Figures 6c and 6d by noticing that the coefficient sub-matrices d1
1 and d1

2 appear
to be approximations of the original image. They are, in the sense that they are
sampled directly from the upper-right corner of the 2 × 2 blocks tiling the original
image or tiling a1 respectively. In contrast, the approximation given by the sub-
matrices a1 or a2 are ‘averages’ of more than one entry of those same 2× 2 blocks.
As a result, in the quantization step, when ‘gap’ coefficients are thrown away they
become unrecoverable. This is readily seen in both Figures 7 and 8. Enough trans-
form coefficient information has been lost due to thresholding that ‘gap’ coefficients
have been thrown away and the reconstructed images have ‘holes’ on those ‘gap’
supports where there is nothing to reconstruct. The ‘gap’ information contained in
an image matrix is approximately one-third the total image information since it con-
stitutes one-fourth of our transform matrix C at each level of decomposition, thus
following a geometric series. Both Figures 7 and 8 throw out more than two-thirds
of the transformed information forcing the deletion of unrecoverable ‘gap’ informa-
tion as already mentioned. Figure 8 shows a portion of a snow covered mountain
with ‘gasket’ features. At 30%, both the DHWT and DSGWT perform fairly well
in this figure, although a bit of bandedness is detectable in the two DSGWT re-
constructions. At 3%, weaknesses of both transforms are evident, blockiness in the
DHWT reconstruction and noticeable bandedness in the DSGWT reconstruction
caused by missing ‘gap’ coefficients as previously described. Although the large
scale structure of the mountain appears amenable to the Sierpinski gasket trans-
form, the mountain does not have the gasket structure at all levels, thus bandedness
is still a problem on smaller scales. It is interesting to note, that in the absence of
information on the transform side, both the Haar and Sierpinski gasket transforms
introduce their structure into the reconstructed images, as demonstrated by Fig-
ures 7 and 8. This is to be expected given our discussion of multiresolutions and
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the fact that the corresponding basis functions of each transform are the building
blocks in the reconstructed images.

5. Conclusion

Very recently, N. Larsen and I. Raeburn have developed an abstract theory
relating multi-resolution analyses and directly limit systems of Hilbert spaces con-
structed from pure isometries. (reference). It is our belief that the fractal wavelets
and multi-resolution analyses of Dutkay and Jorgensen can be fit very nicely into
this framework, and in future work with Raeburn, the third author hopes to pursue
this idea. This Sierpinski gasket case would be a perfect case to which one could
apply the abstract theory of direct limits.

In particular, we conjecture that taking the partial isometry S defined on
L2(T2) by

S(f)(z, w) =
1√
3
(1 + z + w)f(2z, 2w),

then S is a pure isometry on L2(T2), and forming the direct limit Hilbert space
from S via the Larsen-Raeburn construction, one could obtain a multi-resolution
analysis and wavelet families isomorphic to the wavelet families described here. It
then would be possible to use this direct limit characterization to construct a Fourier
transform from L2(RS ,H) to L2(Σ2 ×Σ2, ν), corresponding to that constructed by
Dutkay in [Dut], Corollary 5.8, in the Cantor set case. Here Σ2 represents the
solenoid viewed as the compact Pontryagin dual of the dyadic rationals, and ν is
a probability measure on Σ2 × Σ2 determined by the “low-pass” filter mentioned
above. We leave this discussion to further research.

Acknowledgements. The authors gratefully acknowledge helpful conversa-
tions with Lawrence Baggett, Iain Raeburn, and Arlan Ramsay on the topic of this
article.
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