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ABSTRACT. The classical constructions of wavelets and scaling functions from conju-
gate mirror filters are extended to settings that lack multi-resolution analyses. Using
analogues of the classical low-pass/high-pass filter conditions, generalized mirror fil-
ters are defined in the context of a generalized notion of multi-resolution analysis.
Scaling functions are constructed from these filters using an infinite matrix prod-
uct. From these scaling functions, non-MRA wavelets are built, including one whose
Fourier transform is infinitely differentiable on an arbitrarily large interval.

1. INTRODUCTION

Our primary aim in this paper is to extend the work begun in [Cou] generalizing
the famous techniques of Mallat, Meyer, and Daubechies for constructing wavelets
and scaling functions from conjugate mirror filters. (See [Mall], [Mey], and [Dau].)
While their constructions always give so-called MRA wavelets, i.e., wavelets that
are associated to a multiresolution analysis and a scaling function, our generaliza-
tions of these constructions produce non-MRA wavelets as well. The techniques of
theirs that we have in mind can briefly be summarized as follows: Begin with a
periodic function A that is a conjugate mirror filter, i.e., satisfies a certain “mirror”
equation. Suppose that this filter A is chosen in suAch a way that the infinite product
H;‘;l h(277(¢)) converges to a nonzero function ¢ € L2(R), and set ¢ equal to the

inverse Fourier transform of a Next, construct from the function h a function g,
that is a sort of “complementary mirror filter” to h, i.e., satisfies a certain kind of
pointwise orthogonality condition relative to h.AFina,lly, define a function 9 to be
the dilate of the inverse Fourier transform of g¢. Then, the function ¢ is a scaling
function for a multiresolution analysis {V;}, and the function ¢ is an associated
orthonormal wavelet. If the filter h is carefully chosen, say to be a trigonometric
polynomial and to have a prescribed number of vanishing moments, then the re-
sulting wavelet and scaling function can be shown to be smooth and have compact
support.

Obviously, the ingenious part of this classical construction lies in cleverly choos-
ing the initial function A so that the infinite product converges to a function with
desirable properties. The second step, building the complementary function g, is
a considerably easier problem. It amounts to constructing a unitary matrix-valued
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function whose first column is the vector (h(w), h(w + m)). In any case, the entire
construction procedure suggests that these conjugate mirror filters play a funda-
mental role in the theory of MRA wavelets. Moreover, a relationship between filters
and MRA’s also holds in the reverse direction, since every MRA {V;} and scaling
function ¢ determine a unique conjugate mirror filter.

These classical constructions were specifically for dilation by 2 in L?(R), and
more important from our perspective, the resulting wavelet 1) was always an MRA
wavelet. We wish to extend these constructions to dilations determined by arbitrary
expansive integral matrices in L?(R"), and to do it in such a way that we obtain
construction procedures for very general wavelets or multiwavelets, including non-
MRA wavelets. We believe that this kind of general construction is even of interest
for the classical dilation by 2 case in L?(R).

Many non-MRA wavelets have been constructed since the famous example of
Journé appeared in [Mal2]. (See e.g. [DLS], as well as [BMM] and [BL].) However,
most of the known examples come from wavelet sets, i.e., sets E for which the
inverse Fourier transform of the indicator function y g is a wavelet. These examples,
having Fourier transforms that are not continuous, necessarily fail to vanish rapidly
at infinity, although they are for the most part real analytic. Indeed, it is known
that any wavelet having both a minimal amount of smoothness and decay properties
is necessarily an MRA wavelet. (See [HW].) Our goal in this paper is not simply
to construct new wavelets, but rather to find more subtle examples between well-
behaved MRA examples and the wavelet set examples. In particular, we are able
to construct a non-MRA wavelet in L?(R) whose Fourier transform is C*° on an
arbitrarily large interval (a, b).

To effect a generalization of the classical constructions, we first introduce the
notion of a generalized conjugate mirror filter, which is a matrix {h; ;} of periodic
functions satisfying a generalized form of the classical mirror equation. We are led
to this notion of a generalized filter from the study of generalized multiresolution
analyses (GMRAs). A GMRA is a sequence {V;} of closed subspaces of L*(R"),
very like an MRA, except that instead of having the property that the subspace
Vo contains a scaling function, it is assumed only that Vj is invariant under all
translations by lattice points. Every multiwavelet, MRA or not, determines in a
natural way one of these GMRAs. While the classical techniques produce an MRA
from the filter, our generalization will produce a GMRA from the generalized filter.

If {V;} is a GMRA, then the resulting unitary representation of the lattice group
Z" acting on Vj determines what is to us the fundamental object of interest for
GMRAs, a unique “multiplicity function” m mapping the cube [—m, 7)™ into the
set {0,1,2,...,00}. This multiplicity function m is identically 1 if and only if the
GMRA is actually an MRA. The basic development of this approach to generalized
multiresolution analyses was first presented in [BMM], and further investigations
can be found among other places in [Bag], [BM], [Cou], and [Web]. In the classical
case of dilation by 2, the multiplicity function coincides with the “dimension func-
tion” of Auscher (See [Aus] [HW], and [Web]), and it is very likely that the general
multiplicity function coincides with an appropriately generalized notion of the di-
mension function. (See [Cal] and [BRS].) Even so, the fact that these two functions
are defined very differently makes the information that each provides useful in quite
different ways.
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In the next section, we spell out in some detail the general properties of GMRAs,
generalized conjugate mirror filters and generalized scaling functions. In particular,
we use the multiplicity function m associated to a GMRA {V;} to show the exis-
tence of a set {¢;} of generalized scaling functions in V4. Their translates are not
orthonormal, but they do constitute a normalized tight frame for V4. From these
¢;’s, and the fact that Vj is contained in the dilate of Vj, we show the existence
of a matrix of periodic functions {h; ;} on R™ that plays the role of a generalized
conjugate mirror filter. Given such a collection of h; ;’s, we show how to construct
a generalized complementary conjugate mirror filter, another matrix of functions
{9k.;}, and from them a frame multiwavelet associated to the given GMRA. In
this generalized situation, the construction of these complementary functions is no
longer as simple and direct as it was in the classical case. It is not just a matter of
constructing a matrix-valued function from a given row or rows, for the “dimension”
of the “matrix” changes with the point w. The first instance of solving this problem
of constructing the g ;’s was given in [Cou], where it was applied specifically to
the GMRA (non-MRA) determined by the Journé wavelet.

The discussion in Section 2 assumes that we are given a GMRA to begin with.
Section 3, on the other hand, contains our generalizations of the classical techniques
for constructing scaling functions and thus the GMRAs themselves from filters.
That is, we show that given a multiplicity function m, i.e., a function that satisfies
known necessary conditions established in [BM] and [BRS], we can always construct
a generalized conjugate mirror filter {h; ;} relative to m. Further, we can build
this GCMF {h; ;} with properties that guarantee that a certain infinite “matrix”

product converges. If we then define functions {(ZZ} as the first column of this
infinite product matrix, these ¢;’s form generalized scaling functions for a GMRA
whose associated multiplicity function is the given m. We can then use the results
of Section 2 to define functions {ty}, in terms of the generalized scaling functions
{¢:} and the complementary mirror filter {gy, ;}, that form a (frame) multiwavelet.

As in the classical case, one must be clever in choosing the filter {h; ;}. Also, as
mentioned above, the construction of the complementary functions {g ;} is not as
routine as in the classical case. In Section 4, we give some concrete examples of
how our techniques work. That is, we construct some generalized conjugate mirror
filters with desirable properties, and then use them to build generalized scaling
functions and wavelet (frames). As mentioned above, among our examples here
we include a non-MRA wavelet in L?(R) whose Fourier transform is C°° on an
arbitrarily large interval.

Some earlier constructions of wavelets from filters in the special case of a single
generalized scaling function (a frame multiresolution analysis) can be found in [BL],
[PSWX], [PSW], and [Han]. See the end of Section 2 of this paper for some further
discussion of FMRAs. Similar constructions in the special case of a constant multi-
plicity function appear in [JS] and [HLPS]. We note that even in these special cases,
our procedure differs from this previous work in that we begin our constructions
using only a multiplicity function rather than using variations on known scaling
functions or filters. The authors owe a special thanks to Robert Strichartz, whose
exposition of the classical constructions in [Str1] and [Str2] provided insights helpful
to our generalizations.
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2. FILTERS AND WAVELETS FROM GMRAS
We let the group I' = Z", act on the Hilbert space H = L%(R"), by

(H)l(z) = flz+7).

Given an expansive n x n integer matrix A with |det A| = d, we define another
unitary operator § by

[6(/)](x) = Vdf(Alx)).

By expansive, we mean that all the eigenvalues of A have absolute value greater than
1. This implies that there is a neighborhood F' of the origin in R™ that satisfies F' C
A*F and U;>0A™ F = R", where A* denotes the transpose of A. (See e.g. [GH].)
We will make use of the fact that the map v + 6~ 1vJ = Ay is an isomorphism of
Z™ onto the proper subgroup AZ"™, which has index d = |det A| > 1 in Z". This
isomorphism induces a homomorphism a on the dual group T = [=m, ™)™ defined
by a(w)(y) = w(d14d). The homomorphism a sends w to A*w (mod 27), and
when there is no ambiguity, we will refer to it as A*. The matrix A* also gives an
isomorphism of Z™ onto A*Z". We will have need for a set of coset representatives
of Z™ JA*7Z"™, which we label as lg, l1, - - - lg—1, with [ = 0. For w € [—7, 7)™, we then
let w, = A* Y(w + 27l,), so that wo,ws, - -wq—1 are the d pre-images of w under

a, with wg = A*~lw. We will consistently use Haar measure de on [—m, )",

Lebesgue measure on R”, and Fourier transform given by f(f) = [ f(y)e v ay.
In the context of the actions described above of the unitary operators given by T’
and § on H = L?(R™), we make the following definitions:

DEFINITION. A (orthonormal) multiwavelet for H relative to I and ¢ is a
collection {1)1,%s,...} of vectors in H such that the collection {&7(y(3))}, for
j € Z,~v €T, and i > 1, forms an orthonormal basis for 4. If the collection
{69 (v(2p;))} forms instead only a normalized tight frame for H, it is called a frame
multiwavelet.

Every multiwavelet determines a more general structure of nested subspaces of
H by setting V; equal to the closure of the span of the vectors 6% (v(v;)), for v € T,
i > 1, and k < j. These subspaces satisfy the definition below ([BMM]):

DEFINITION. A generalized multiresolution analysis (GMRA) of H, relative
to I and ¢, is a collection {V;}>° of closed subspaces of H that satisty:
(1) V; C Vjqq for all j.
(2) 6(V3) = Vi for all .
(3) UV is dense in H and NV; = {0}.
(4) Vjp is invariant under the action of T'.

A GMRA also determines a mutually orthogonal sequence of subspaces Wj,
defined by V;11 = V; ® W}, whose closed linear span is H.

Unlike the classical definition of a multiresolution analysis (MRA), a GMRA
does not require the existence of a scaling vector ¢ whose translates form an or-
thonormal basis for V5. However, as shown in [BMM], and [BM], we can obtain
similar information about its structure by studying the unitary representation de-
termined by the action of I' on Vj. By the spectral multiplicity theory developed
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by Stone ([Sto]) and Mackey ([Mac]) (see also [Hal] and [Hel]), the representa-
tion is completely determined by a multiplicity function m mapping T into the
set {0,1,2,... ,00}. (In general, a complete description of the representation also
requires specifying a measure class, but in the case of a GMRA on L?(R"), the
measure must always be absolutely continuous with respect to Lebesgue measure
[BMM].) The multiplicity function roughly counts the number of times each char-
acter in T’ occurs in the representation. If the GMRA is an MRA, translates by T
of the scaling function ¢ give an orthonormal basis for V. Thus in this case, the
representation of translation by I' on 1} is equivalent to the regular representation
of I'. The regular representation is known to (weakly) contain every character ex-
actly once, so in the MRA case we have m = 1. Many other multiplicity functions
are possible for GMRA’s. (See [BMM], and [BM].)

To use the information the multiplicity function provides about p, we form the
direct sum L?(S1) & L*(Sy) @ -+, where S; = {z € [-m,m)" : m(z) > j}. The
properties of m guarantee the existence of a unitary map J : Vg — @?‘;117(5]')
which intertwines the actions of I' on ¥V, and on ©52, L*(S;). (See [Cou| for more
details.)

The following Theorem summarizes the properties of the multiplicity function
m and the map J that we will need in this paper.

THEOREM 2.1. Let {V;} be a GMRA in the Hilbert space H = L?(R™) relative
to unitary operators given by I' and . Then there exists an (almost everywhere)

unique function m : [—-m,m)* = {0,1,2,... ,00} such that:
(1) For each j > 0, set S; = {w € [—m,m)"” : m(w) > j}. Then there exists a
(not necessarily unique) unitary operator J : Vo — @;’;1 L2(S;) satisfying

[T () = T LI(f)](w)

for ally € Z", all f € Vp, and p almost all w € [—7, 7)™.

(2) Let J be as in (1). Let x; be the element of @;’il L?(S;) whose ith compo-
nent is xs;, the characteristic function of S;, and whose other components
are all 0; set ¢; = J~1(x;). Then the collection {~(¢;)} forms a normalized
tight frame for Vj.

(3) The function m satisfies the following consistency inequality:

d—1
m(w) < Z m(w;)
1=0

for almost all w, where wy,ws,---w4—1 are the d points in [—m, 7)™ such
that A*w; = w mod 2.

(4) There exist vectors 11,19 - -+ In the subspace Wy that form a frame mul-
tiwavelet for L?(R™). These vectors form an orthonormal N-wavelet if and

only if (27:_01 m(wl)) —m(w) =N a.e..
PROOF. See [BMM] and [BM].

The function m of Theorem 2.1 is called the multiplicity function associated to
the GMRA {V;}. Any set of vectors {¢;} in Vg that satisfy the frame condition in
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(2) are called generalized scaling vectors. In general, the multiplicity function m
may take on the value co on a set of positive measure. However, in this paper, we
will consider only the case where m is finite almost everywhere. In this case, we can

define m(w) = ( ;:01 m(wl)> —m(w), so that (3) of Theorem 2.1 can be rewritten

as the following consistency equation:

d—1

m(w) + m(w) = Y m(w).

=0

With this definition, (4) of Theorem 2.1 states that if m has constant value N, the
GMRA has an associated orthonormal N-wavelet; if the value of m is not constant,
the GMRA has only a frame multiwavelet. Analogous to the definitions of sets S;
associated to m, we let S; = {w : m(w) > j}.

In the classical case of dilation by 2 in L?(R), Mallat and Meyer constructed
wavelets using a tool called a conjugate mirror filter (CMF) associated to the scaling
function ¢ of an MRA. Following the work of Courter [Coul, we will show that the
generalized scaling vectors defined above yield a collection of functions analogous
to the CMF of Mallat and Meyer. First we need the following technical result:

LEMMA 2.2. Let f € L*([—n,7)"), and define f(w) = 27;01 f(wy). Then the
Fourier coefficients of f and f satisfy

cx(f) = dean(f)
forallk € Z", where wy,ws, + - - wg—1 are the d points in [—m, )™ such that A*w; = w
mod 2.

PROOF. Let z; = w;—wq. Then zy = 0, 21, - - - z4—1 are the d elements of the kernel
of the homomorphism o = A* acting on [—7,7)™. Thus, making the change of
variables y = w;, we get

d—1

~ 1 .
- —i(k|w)
Ck (.f) (271')” ,/[_ﬂ—’ﬂ—)n ; f(wl)e dw
1 d—1
= — fwy)e i Akl g,
(271-)11 ; ~/[—7T,7r)” :
d d—1
_ f(y)eHAKIY) gy
(27T)n ;A*l[—ﬂ,ﬂ')"JﬁZl ( )
d / —i(Akly)
= fly)e “AHvay
(27T)n [—m,m)™ ( )
== chk(f).

We are now ready to prove the existence of a generalized scaling function analog
to the conjugate mirror filters of Mallat and Meyer.
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DEFINITION. Let m be an arbitrary measurable function mapping [—7, 7)"
into {0,1,2,---} that satisfies the consistency inequality of Theorem 2.1, and let
S; = {w:m(w) > j}. Aset {h;;} of functions on [—m, w)", with support(h; ;) C Sj;,
and satisfying

2 —— [dxs(w) i=k
S bt = {

J

for almost all w € [—m, 7)™, is called a generalized conjugate mirror filter (GCMF)
relative to m.

Remark.. In the definition of GCMF, i and j take on all nonzero values in the range
of m. We will sometimes write the GCMF in the form h; = ®;h;; € @5—; L*(S)).
We will also use the notation {h; ;} for the 27 periodic extensions of the GCMF
{hi s}

THEOREM 2.3. Let J, {¢;}, m and S; be as in Theorem 2.1. Define functions
hij on [—m,m)™ by the condition

J(6(¢i)) = hi = @ hij.

Then the functions h; ; are a GCMF relative to m.

PROOF. Fix i and k, and let f(w) =>_, hi (w ) j(w). Then, using the notation
of Lemma 2.2, we must show

= . [dxs,(w) i=k
R B

We have for v € Z" N
&y (f) = deay(f)
=d(h; | ¢ hy) g L2(S;)
<5 ¢z | A’YO ¢k>"H
=d(¢i | 70k)n
=d(xi | €)@ ras;)
_ dc’Y(XSi) i=k
0 i£k
We will continue to mimic the construction technique used by Mallat and Meyer
in the classical MRA setting. After identifying a CMF associated to the scaling
function of the MRA, Mallat and Meyer used it to build a second CMF, and then

showed that this second CMF must be associated to a wavelet. Following Courter
[Cou], we develop the following analog for GMRAs.

DEFINITION. Let m : T — {0,1,2,...} be an arbitrary measurable function
that satisfies the consistency inequality of Theorem 2.1, and let {h; ;} be a GCMF
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relative to m. As before, let m(w) = (Zf;ol m(wl)) —m(w), and §j ={w:mw) >
j}. By a complementary conjugate mirror filter (CCMF), we will mean a collection
{gk,;} of functions on [—m, 7)™, with support(gx ;) C S;, which satisfy:

d—1 d ~ (W k — k,'l
DD gwi(wi)gns(w) = { X3, (@)
1=0

!
j 0 k#k
and
d—1
SN hi(wi) g j(w) =0
j 1=0

for all 7 and k.

Remark. In the definition of a CCMF, k takes on nonzero values in the range of
m, while j takes on nonzero values in the range of m. As with GCMFs, we will
sometimes write a CCMF in the form gr = @;gx,; € D), L2(S;). We will again
use the notation {gx ;} as well for the 27 periodic extensions of the CCMF {gs ;}.

The construction of CCMFs from GCMFs relies on linear algebra arguments
developed in [Cou] that generalize Mallat and Meyer’s constructions to allow the
dimension of the vectors built from the filters to change with w. We adopt the
following notation. Fix an w € [—7,7)", and again write wg,w1, - w4—1 for the d
points in [—m, 7)™ such that A*(w;) = w mod 2w. Let [; = m(w;) for 0 < j <d—-1.
Note that wy ¢ S; for any j > I, and by the consistency equation, we have that
Zj;é lj =m(w) +m(w). Let f = @f; € @i, L2(S;). Since f; is supported on S,
and w, ¢ S; for j > m(wg), we know that f;(wk) =0 for j > m(wg) = lx. Thus we
can build a vector f“ whose components include all of the nonzero values of the f;
at the points wy as follows:

fw = (fl(w(]);"' aflo(wo)afl(wl)a"' afh(wl)v"' afl(wdfl)v"' afld71(wd*1))'

For each fixed w, the consistency equation shows that f“’ is a vector of length
m(w) + m(w). If f,g € @2, L*(S;), we will write (f* | g~) and [|f*] for the
ordinary inner product and norm in C"™(«)+™(«)  Thus

d—1
(F 13 =33 flw)glwn).

j r=0
With this notation, the equations in the definitions of GCMF and CCMF can be
written as follows.

LEMMA 2.4. The functions {h; ;} are a GCMF relative to the multiplicity func-
tion m if and only if support(h; ;) C S; and

5o dxs,(w) i=k
hy | hy) = ’
i g = {
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for almost all w. The functions {gr ;} are an associated CCMF if and only if
support(gk ;) C S; and

oy [ dxg (W) i=
<gi|gj>{0 it

and
(g7 | A7) =0
for almost all w and all i and j.

THEOREM 2.5. Let {V;} be a GMRA in the Hilbert space H = L*(R"™), with
multiplicity function m that is finite almost everywhere. Suppose {h; ;} is a GCMF
constructed as in Theorem 2.3. Then

(1) A CCMF {gy ;} can be constructed explicitly from {h; ;}.

(2) If {gk,;} is any COMF for {h;;}, and we set ¥ = 6(J 1 (Dgk ;)), then
the collection {67 (y(vx))}, for v € T, j € Z, and k > 0, forms a frame
multiwavelet for H.

(3) Suppose m = N, and let {gy, ;} be any CCMF for {h; ;}. If we set ¢y =
5(J~Y(®gr.;)), then the collection {67 (y(¢y))}, for v € T, j € Z, and 1 <
k < N, forms a multiwavelet for H.

PROOF. Proof of (1): Partition [, )" into a countable collection of sets of
the form P, , , 7= {w € [-m,7)" : m(w,) = I, and m(w) = I}. We will
0,01 d—1;

define the functions g; ;, i > 1, piecewise on the sets Plo Loy o0 by fixing an w €

loul by a0 and building vectors g (as described above Lemma 2.4) measurably
in w. For each fixed w, the GCMF {h; ;} determines m(w) orthogonal vectors ﬁ‘;’
in C™@)+™(@)  To produce the CCMF, we must measurably construct 7 (w) more
orthogonal vectors gy € Cm@)+m(w) each of norm v/d. This is always possible
by the obvious dimension argument. It can be accomplished by inspection, by
Gram-Schmidt, or by the following generalization of Courter’s technique for the
case m(w) =1 [Coul.

If i(w) > 1 we can find m(w)+ 1 components of the orthogonal vectors A% such
that if we only look at these components, they form m(w) independent vectors in
C™@)+1 gpace. Take a cross product of these m(w) vectors in C™“)+! o get an
orthogonal vector in C™(“)+1, Finally, enlarge this vector to a vector in C™«)+m(«)
by inserting 0’s in missing components. The resulting vector, properly normalized,
is our first gy. We then repeat the process to get the rest of the g.

Proof of (2): Let T = {g1, h1,92,h2, - }C @), L2(S;). First notice that for
any fixed w, Lemma 2.4 shows that the vectors ﬁg"f for 1 < i < m(w) and ﬁﬁ‘;’

for 1 < j < m(w) form an orthonormal basis of C™«)+7™(«) We use this to show
that {e4*1)r . 7 € T k € Z"} form a normalized tight frame for D52, L2(S)).
Let f = ®f; be an arbitrary element of @;’;1 L2(S;). Then, using Lemma 2.2 we



10 L.W. BAGGETT, J.E. COURTER AND K.D. MERRILL

see that
S UF eI r) gy pagsy Z|0Ak Zfﬂa
ok
- d—22|ck<<fw )P
== Z” P T2 mmym)
(2r "d2 Z/_ 7)o

T 7r)"
1 2
- 2 _ d
d(2m)" /[—77 o Hf ||Cm(w)+m(w) w

= _CO ZZ'fJ wl
:CA(O)(Z|fj| )

= ||f|\é;;;1 12(5)

It follows immediately from ( ) of Theorem 2.1 that the functions (Ay)é=1e; =
0~ tyap; and (Ay)d~1p; = 67 1yey, for v € Z™, form a normalized tight frame for
Vb. Since § is unitary, this shows that the functions ~yi;,v¢; for v € Z™ form a
normalized tight frame for V3. Writing Vi = V@ W, it follows from (2) of Theorem
2.1 that {y%);} form a normalized tight frame for Wy, and thus that {§7~;} form
a tight frame for H. o ~ ~
Proof of (3): If m = N, we have Sy, Sa,--- Sy all equal to [—m,m)", and S; =0
if j > N. Thus, for almost all w € [—m, w)™, the vectors %g’:’ for 1 < i< N form

an orthonormal basis for CV. A similar calculation to that of part 2 shows

<ei<Ak| (AK'|- >gi,> = cA(kffk)(Z 94,394 .5)

J

gi | €'l

1 W )

= Eckfk’«gi | g77))

_flifk=Fk andi=17

10 otherwise
so that the functions (A%l g; for k€ Z and 1 < ¢ < N form an orthonormal basis
for their span in @ - =1 L2(S;). Again, following the argument in part (2) we see
that the functions y; for v € Z and 1 < i < N form an orthonormal basis of W
and thus that the functions 474; form an orthonormal basis for H.

We close this section by specializing the development above to the case of an
FMRA, which is a GMRA {V;} for which there is a single generalized scaling
function ¢ € Vj. From our point of view, this is equivalent to the condition that



WAVELETS FROM CONJUGATE MIRROR FILTERS 11

the multiplicity function m associated to the GMRA is simply the characteristic
function xg of some subset S C I'. Since in this case m only takes on the values 0
and 1, it follows that any GCMF relative to m will be a single function h, and the
mirror equation it satisfies is

d—1
D hw)? = dxs(w).
1=0

We note that this is different from the “mirror equations” for FMRAs studied in
[PSW].

The multiplicity function m = x g satisfies the consistency equation, showing that
the associated function m could very well take on values between 0 and d. Therefore,
there may be as many as d elements in the corresponding frame multiwavelet.

In Section 4 we will use our general techniques to construct explicitly an FMRA
and its associated frame multiwavelet. In the classical case of dilation by 2 in L?(R),
we are able to do this in such a way that the Fourier transform of the wavelet is
C° on an arbitrarily large interval.

3. MULTIPLICITY FUNCTIONS

In the last section, we showed how to build (frame) multiwavelets from the
GCMF associated to the generalized scaling functions of GMRAs. The missing
ingredient from this formula is a technique for finding GMRAs and their generalized
scaling functions. In this Section, we show how to build generalized scaling functions
and thus GMRAs and wavelets from simple GCMFs generalized from the L?(R)
case. We are able to do this starting only with knowledge of a multiplicity function
m. To begin this construction, we need the following determination of exactly
which functions are multiplicity functions for GMRAs. As before, given a function
m: [-m,m)" = {0,1,2,---}, we let S; = {w € [-m,m)" : m(w) > i}. Let A =
N2 o A**(S1 + 27Z™).

PROPOSITION 3.1. If m : [-m, 7)™ — {0,1,2,---} is an integrable function
such that

(1) m satisfies the consistency inequality

d—1
m(w) <Y mlw)
=0

Z Xa(w + 2my) > m(w).
~el’

UPGZA*pA = Rn
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Then m is a multiplicity function for a GMRA in L?(R™). In this case there exists
a generalized scaling set E = U$° | E; C R™ for m with the following properties:
(i) The sets E; are disjoint, with E; congruent to S; mod 2.
(ii) By C A*(US_|E;).
(iii) If there exists a neighborhood of the origin on which m(w) > 0, then E; contains
a neighborhood of 0 and U;‘;kA*jEl = R"™ for every k € Z.
(JV) If S C A*Sy then F1 = S;.

PROOF. The sufficiency of the three conditions listed for an integrable function
to be a multiplicity function for a GMRA is established in Theorem 1.5 of [BM].
(See [BRS] for a similar result.) The proof of Theorem 1.5 of [BM] constructs the
generalized scaling set F with properties (i), (ii) and (iv) above. Property (iii)
follows from the fact that when the support of m contains a neighborhood of the
origin, the expansive properties of A imply that A will also contain a (possibly
different) neighborhood. By the first stage of the construction of E in [BM] , this
guarantees that E; too will contain a neighborhood of the origin. Property (ii) and
the fact that A is expansive then show that U7 A E; =R for every k € Z.

We will use this information about multiplicity functions, particularly the exis-
tence of the scaling set E = UFE;, to show how to build GMRAs using GCMFs. We
will do this by constructing the Fourier transforms of generalized scaling functions.
We need the following tool, which is analogous to a well-known MRA result (see
e.g. [HW] p. 382). As in the MRA result, the three conditions on the {¢;} in
Theorem 3.2 are actually both necessary and sufficient. For brevity, we include
only the direction we need.

THEOREM 3.2. Suppose m is an integrable function on the cube [—m, 7)™ sat-
isfying the hypotheses of Proposition 3.1, with S; = {w € [-m,m)" : m(w) > i},
and that the collection {h; ;} is a GCMF relative to m. Suppose that {¢;} is a
collection of functions in L?(R™) that satisfy the following three conditions.

(1) For almost all w € [—m, 7)™, we have

Z ng(w + 27rl)q5xj(w +2nl) = { 0 for i # j

= Xsi(w) fori=j

(2) For each i we have

~ 1 —

¢wm:ﬁ2mmwa

for almost all £ € R™.
(3) For almost all £ € R™,

limsup Y |gs(A" (€)= 1.

Jj—oo
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Then the ¢;’s are generalized scaling functions for a GMRA {V;} whose associated
multiplicity function is the given function m.

PROOF. Set V, equal to the closure of the span of the integral translates of the
¢i’s, and set V; equal to 67(V;). We will show that (1) implies that the translates
of the ¢;’s form a normalized tight frame for V{, and that the representation of Z"
on Vp has associated multiplicity function equal to m. We will show next that (2)
implies that Vy C §(Vp) so that V; C Vj14. The fact that NV; = {0} will follow as a
consequence of the integrability of m together with (1), while the denseness of UV;
will follow from (3).

If f € Vg, then fmust be of the form Zj uj@, where each u; is periodic. We
have then, using (1), the following calculation for every f € Vj.

PIPBARTCINED IS W| /R F©di(g)e 0 agP

1 —
e SO D S SR
7 v [=mm)m i 1
X z(w + 21l)e 01 gy ?
1 )
= | §(@)xs, (@)eT ) do?
(Wn;; /[_Wu W)xs: (@)e w

! wi(w)|?xs, (w) dw
B 2, e s

- (271r)" /R PIITAGENGIRY:

el UGS
~ 712,

so that the functions {y(#;)} form a normalized tight frame for Vj.
Now define an operator J : Vo — @ L?(S;) by the formula

[T()aw) = D _(f 1 1()e" T xs, (w).

~

One sees directly that this operator J is unitary and satisfies the intertwining
condition of Theorem 2.1 (1). In particular, the multiplicity function associated to
the representation of Z™ on Vj is equivalent to the multiplicity function associated
to the representation of Z™ acting by multiplication by exponentials on the direct
sum @, L2(S;), and this multiplicity function is >_, xs,, which is the given function
m.

Next, we write the periodic function h; ; in its Fourier series,

hij(w) = Z ci,j,’yei<7|w>7
v
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so that we see by (2) that

Vdpi(A*(¢ Zh,]
_ chi’jﬁe 7|£>$j(§)
i "

so that,

= Z Z Ci,j,’y’Y(qu)‘

Hence, 6 !(¢;) belongs to the closed linear span of the translates of the ¢;’s. So,
we have that Vy C §(V}), as desired.

Write P; for the orthogonal projection operator onto the subspace V;. To prove
that NV; = {0}, it will suffice to show that lim; ,o ||P—;(f)| = 0 for each f €
L2?(R™). By a standard approximation argument, it will suffice to show this holds
on a dense subset of L?(R™). Thus, let f be a Schwartz function for which fvanishes
in some neighborhood Ny of 0, and write Cy for the (finite) number ), [ f* f*(k)|.
Such f’s are dense in L?(R"). The Poisson Summation Formula holds for such an
f, and we will use it in the following form:

dlz ~I (& + 2nl)) Zf £ (AT (k))e~iHIE)
1

Now, for each & € [—m, 7)™, let 1;(£) be the largest number for which A* 7 (¢+2nl) €
Ny for all |I| < 1;(§). Because A is expansive, we must have that [;(§) tends to
infinity for almost every £. Finally, we use the fact that the function

W)= x5, @) =D [¢i(w + 21l
(3 1 1
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is assumed to be integrable on the cube [, 7). Hence, we have

1P DI = %sz@mﬂ

=

% (5)672@4 (&) d§|2

1 .
= W?;'/Rn@@
x F(A*9(€)e 19 dg]?

_ ndﬂz/_ |§l:q§(g+27rz)

)"

« f( ~I(& + 2ml))|? de¢
1 ~
__ 1 ¢; (& + 2ml
(2m)ndi ;/[W,W)" | mgj(g) ( )
x FA* (& + 2ml)) 2 dg
1
<1 &i (€ + 2ml
27.‘. ndi Z~/[7F7T) |l|>§l;(€)| T()|

x> |F(A* (& + 2nl))|? d¢
|l|>lj(5)

:ﬁ /[_ y [Z > |<$i<5+zwz>|2]

i |1[>15(8)

x l%ZIf(A”(HM))F dg
)
) ~
_ _ |s (€ + 27l) |2
(2m) /[_mr)" Ei:mgl:j(ﬁ) ]
]
) ~
<o 91(6 + 2m)
(2m) /[r,vr)" ;|l|§j(§) ]
x [Z|f*f*(Aj(k))|1 d¢
k
<o XYl

T U>15(0)

15

which approaches 0 as j goes to infinity by the Dominated Convergence Theorem.
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We have that the sequence ||P;(f)||? is nondecreasing, as j approaches oo, for
every f € L?, and is bounded above by | f||?. Moreover, || f]|? = lim;_oo | P;(f)[?
for every f € L? if and only if UV is dense in L?(R™). It will suffice to verify that this
limit holds for every f € L?(R"™) whose Fourier transform fhas compact support.
Because the functions {v(¢;)} form a normalized tight frame for V), we know that
the functions {07 (y(¢;))} form a normalized tight frame for V;. Therefore, we have
for fof compact support and j sufficiently large,

2O = ot | P
- 5o 2.2 / AT G4 (€) Fl€) def?

o QnZZ/ o019 30 FLAS () d?

T 71')"

- W zi:/[m)n |pi(w) f(A™ (w))]” dw

__1 DA =T () FE) |2
B L o A OO

__1 S A*I 2 71 e)[2
=T Sy S AT OO

Since this sequence is bounded above by | f||? and (eventually) nondecreasing for
all f’s whose Fouri(ir transforms have a common compact support, we deduce that
the functions Y, [¢;(A*9())|? are almost everywhere eventually nondecreasing
and bounded above by 1. Therefore, the limsup in (3) is actually always a limit.

Finally, the preceding calculation shows that the sequence {||P;(f)|/?} converges to
| £]I? for all such f’s if (3) holds.

Using this result, we will now show how to build Fourier transforms of generalized
scaling functions from GCMFs having specified properties. This process general-
izes the classical infinite product construction of Mallat, Meyer, and Daubechies.
To simplify the proofs, we consider here only the case of a bounded multiplicity
function.

DEFINITION. We call a GCMF lower triangular if h; ; = 0 for j > 4.

Suppose m : [—m, )" — {0,1,2,...c} is a bounded function satisfying the hy-
potheses of Proposition 3.1, and S; = {w € [-7, 7)™ : m(w) > i} as before. Suppose
{h; ;}, for 1 < 4,5 < ¢, is a lower triangular GCMF relative to m, and write M"
for the matrix product

H—hA* 3(€)).

For the purposes of the following proofs, we introduce another matrix product M n,
defined inductively as follows, where the E;’s are sets guaranteed by Proposition
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3.1 and x g, are their characteristic functions. Let

XE, 0 0 --- 0
Xes—Xe Xeg 0 -+ 0

M= | XxBs—xe O xeg - O [
xe.,—xe 0 0 - Xxg

and M™(£) = ﬁh(A**lg)]’\anl(A**lf) for n > 0. We will need the following

technical lemma.
LEMMA 3.3. Let the notation be as in the preceding paragraph. Suppose that

m > 0 on a neighborhood of the origin, and assume that the sequence {M"(£)}
converges to a (lower triangular) matrix M () for almost all {. Then:

(1) The sequence {]T/f ™ (&)} converges almost everywhere to the matrix product
M(&) = M(§)K, where K is the constant matrix

1 000 -~ 0
-11 0 0 -+ 0
-1 010 --- 0
-1 0 0 0 - 1

(2) For alll <i < ¢, we have

3) For all i and i’ we have
(3)

ZZMH w+27rl2 <w+27rl){

lezm j=1

0 for i #£ 4’
xs,;(w) fori=74""

(4) The entries M; 1 belong to L*(R™).

PROOF. By Proposition 3.1, E; contains a neighborhood of the origin, and thus,
for almost all ¢ € R, we must have that A*~7(¢) ¢ E; for i > 1 and all large enough
j- Parts (1) and (2) then follow from a straightforward matrix computation.

We now show part (3) by induction on n. If n = 0, we have

ZZMO w+ 27l Z S(w+2wl) = ZXEi(w+27rl)XEi,(w+27rl)

ez j=1 lezn
{ 0 ifi#d
| xs(w) ifi=4
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Now, assume

ZZM" w + 27l)) ZM Aw+2wl)) = {O lfl?él:

lezn g xs; (w) ifi=i
Then
S OoME @+ 2m) (Y M w + 2ml))
leZn g 4
- Z ZZ\/— k(AT 1(w+27Tl))ng(A* Hw + 270))
lezn \ g

1 —
Z: Ek/: ﬁhi',k' (A1 (w + 27Tl))M,?,’j,(A**1(w +27l))

J

As described at the beginning of Section 2, we write [ = [, + A*p, where [, is a coset
representative of Z" /A*Z™ and p is an integer lattice point. Then A*~!(w+ 27l) =
A*~Y(w + 2rl,) + 2mp. By periodicity of h, our expression becomes

d—1
33N hiw(A N w + 2wl g (A (w + 2aly))

q=0 k k'

< 3OS ME (AT N (w + 2ly) + 2mp) M, (AT (w + 2mly) + 27p).
pEZ™ § j'

By the inductive assumption, the expression then becomes

DD (il A w + 2lg) i o (A w + 2mly)) ) xs, (A" (w + 2nly)),

Since h; j, is supported on Sy and h is a GCMF, we then have

0 ifi A4
xs; (W) ifi=1d"

5 A4 o+ 2 AT+ 207 = {
q k

This finishes the proof of part (3).

Finally, we use part (3) to show that the components M; ; of the matrix product
M belong to L2(R™). We integrate both sides of (3) over [~m, )" to see that
[>2; M7 <1 and then apply Fatou’s Lemma and part (2).

THEOREM 3.4. As in the preceding lemma, suppose m > 0 on a neighborhood
of the origin, and that the sequence {M"™(£)} converges to a (lower triangular)
matrix M(§) for almost all §. Suppose in addition that the entries M;; converge

to J\Z] in LQ(R") and that the function M, is nonzero on a neighborhood of
the origin. Then the functions {M; 1} are the Fourier transforms of a set {¢;}
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of generalized scaling functions for a GMRA {V;}, whose associated multiplicity
function coincides with the given function m.

PROOF. Define ¢; to equal M; 1. By (4) of the preceding lemma, we know that the
$i's are in L2 (R™). We will show that the functions {¢;} satisfy the three conditions
of Theorem 3.2.

To see that the ¢;’s satisfy (1) of Theorem 3.2, let quy =3 y ]\,/.71”] Then, by part
(8) of the preceding lemma,

. —_— 0 for i # 7
qu (w + 2l)P% (w + 27l) = {XS,»(w) T

— 5!
Pyl fori=1

The left hand side of this equation is a function on [—m, )" whose v** Fourier
coefficient is (y@? | #%). Thus, (yé? | %) is the 4" Fourier coefficient of the right
hand side of this equation as well. Since (using part (2) of the preceding lemma)
we are assuming that ¢7 — ¢; in L2(R™), we have (v¢7 | ¢%) — (y¢s | ¢i), so
that (yé; | i) must also be the " Fourier coefficient of the function which is 0
when i # i’ and xg, when i = i’. But (y¢; | ¢ir) is the ¥** Fourier coefficient for
the function »_,_, c}ﬁ\z(w + 27rl)cg;(w + 2xl). Equation (1) of Theorem 3.2 follows.

Next we show that the collection {¢;} satisfies property (2) of Theorem 3.2.
Thus,

$i(A€) = M, Mia(4%¢)
- H h((4%)7¢)

7,1

t]

- |11 %h«A*W&)

L
;7 ().

We will finish the proof by showing that {¢;} satisfy property (3) of Theorem
3.2. By iterating property (2) for the {¢;}, we have

k1

d1(€) = lim (H Tt ’“5)) $1(A"99).

Because the GCMF {h; ;} is lower triangular, this infinite product converges to
b (), implying that lim; o E(A* ~J(€)) must exist and equal 1 wherever b1 &) #
0, which by hypothesis includes a neighborhood of the origin. Since this limit is
invariant under A*, and A* is expansive, we have lim;_, E(A**j(é)) =1 ae,
which clearly implies condition (3) of Theorem 3.2.
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The preceding theorem shows how to construct generalized scaling functions
for a GMRA from filters having special properties. The next corollary completes
our generalization of [Mall], [Mey| and [Dau], by describing how to construct the
related wavelet basis from these generalized scaling functions and a complementary
filter.

COROLLARY 3.5. Let m, {h;;}, and {¢;} be as in the preceding theorem.
Let {gx,;} be any complementary conjugate mirror filter associated to the GCMF
{h; ;}. For each k, define a function 1y by

Vi (A*(©)) = 3 06.4(€)55(0)

Then the collection {1y} is a frame multiwavelet for L?(R™). If m satisfies the

consistency equation m(w) + N = > m(w;), then 11, ... ,1pn form a multiwavelet
for L*(R™).

PROOF. Part (2) of Theorem 2.5 gives a formula for the wavelet basis in terms of
the complementary filter and the unitary map J : Vo — @ L?(S;), that is

6 (k) = J_l(@ Gk.j)-

In the present case, such a map J is defined in the proof of Theorem 3.2 and is
given by
[T(H)i(w) =D (F [7(8))e ) xs; (w).

vy

We see that the inverse of this J is given by

J_l(@ v) =Y Y (),

Jj y€EL™

where the ¢;,’s are the Fourier coeflicients of the function v;. We complete the
argument by computing the Fourier transforms of both sides of\the equation above
defining 1. The Fourier transform of §71(s,) is given by \/E@bk(A* (§)), while the
Fourier transform of J=!(&D ; Ik, ;) is given by

D02 i 965(6) = D7 0k (6)95(6).

The above constructions rely on a judicious choice of a GCMF. In the next
theorem we show how to construct GCMFs to which Theorem 3.4 applies. To
do this, we will need to impose some restrictions on the multiplicity function m.
However, these restrictions are met by almost all of the multiplicity functions that
have received attention in the literature.
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THEOREM 3.6. Let m : [—7w,m)" — {0,1,2,---¢} be a bounded function that
satisfies the conditions of Proposition 3.1. In addition, suppose m(w) > 0 on a
neighborhood of the origin, and m(w) > ¢ — 1. Then a GCMF that satisfies the
conditions of Theorem 3.4 can be constructed explicitly from m.

PROOF. We begin by taking h;; = \/EXA*—lEl, where FE is defined as in Propo-
sition 3.1, and h; ; = 0 for j > 1. Note that h; = ©h, ; satisfies

d—1
DO b (w)? = dxs, (),
=0

J

as in the definition of a generalized conjugate mirror filter, for exactly one of the
preimages, w;, of w is in A*~'E; mod 2~ if and only if w € S1. Since by hypothesis
S1 contains a neighborhood of the origin, Proposition 3.1 ensures that F; does as
well. Thus this definition of h; will guarantee that M; 1(w) # 0 on a neighborhood
of 0. To construct the remainder of the h; ; we use the following procedure: As in
the proof of Theorem 2.5, partition [—m, 7)™ into a countable collection of sets of

the form _
tosdaseody o0 = W E [-m,m)" i m(wy) = L, m(w) = 1}
We will define the functions h; ;, i > 2, piecewise on the sets P o T by
fixing an w, and building the vectors l_i‘;’ = (hs1{wo)s -+ s higg(wo), hi1(wr), <+,
hig (w1),- -+ hia(wa—1),- , hig, ,(wa—1)) as in Lemma 2.4. Once we have built

vectors hY € C™@HM(@) for 2 < § < m(w), for almost all w € [—m,7)", we will
have determined the functions h; ; a.e.. In particular, knowledge of h; ; in the wy
positions will determine the function h; ; on a neighborhood of the origin.

In order to have the resulting functions h; ; be a GCMF, we must have the vectors

l_i‘;’ satisfy the first property of Lemma 2.4. Thus, for almost all w € Plo,ll,---ld,l,f’
we must have m(w) = Zf;é 1, — 1 vectors h¥, 1 < i < m(w), which are pairwise
orthogonal and each of norm v/d. Our choice of by gives us the first of these vectors,
h%. Since our vectors are m(w) + M (w) long, and m(w) + Mm(w) > m(w) + ¢ — 1, we
know that it is possible to construct enough pairwise orthogonal vectors. In order
to meet the required conditions of the Theorem, our strategy will be to simplify
the matrix product in Theorem 3.4 by taking each of our vectors to have a single
nonzero entry of v/d, each in a different position. (Note that ﬁ“{ already has this
property.) This will leave m(w) > ¢ — 1 extra positions we do not need to use
for a nonzero entry in one of the vectors. In order to further simplify the matrix
product, we would like h; ;(A* *F(w)) = 0 for j # 1 and k sufficiently large. This
would have the effect of making the matrix product M have nonzero entries only
in the first column. We will accomplish this by taking h; ;(wo) = 0 whenever j # 0.
This will still allow us enough places to construct m(w) orthogonal vectors, since
we will be requiring 0’s in m(wp) — 1 < ¢ — 1 positions, and we have seen that we
have ¢ — 1 positions we do not need. With these requirements and the need for the
GCMF to be lower triangular in mind, we build the vectors ﬁ‘;’ for ¢ > 2 as follows:
Let g1 be the number of distinct preimages w, of w under « (i.e. under A* mod
27) that are not in A*"1E; and that satisfy m(w,) > 1. For t > 1, let ¢; be the
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number of distinct preimages wy 7# wp of w under a that satisfy m(w,) > ¢. Then
d—1>q >q > >¢q,and >, q < Z] —olj = m(w) + m(w). There are
¢, different points w, ¢ A*~1E; that are in S; and thus ¢; positions of the form
hi1(wy), wy ¢ support(hy,1), in the vectors ﬁ‘j We build the next g; vectors ﬁ‘j by
letting each take on the value v/d in the j = 1 position at a different one of these
points. Similarly, there are go different positions of the form h; 2(wr), 7 # 0 in the

¢; we build the next go vectors l_i‘l” by letting each take on the value v/d
in the j = 2 position at a different one of these points, etc. We have constructed
m(w) different vectors f_z";’ that are orthogonal and have norm v/d. By Lemma 2.4,
these vectors determine functions h; ; that satisfy the definition of a GCMF. We
have h; j(w,) = 01if j > i since we built the vectors l_i‘l” in order of increasing i, with
at least one with its nonzero element in the first column, then at least one with its
nonzero element in the second column, etc.. Thus we have built a lower triangular
GCMF. As usual, we extend the functions h; ; perlodlcally

vectors h¥:

It remains to show that the components of M™ (&) converge to those of M (f)
L?(R™). We have built the h; ; such that h; j(wg) = 0 for j > 1, so that h; j(w) =0
on a neighborhood of the origin for j > 1. As a consequence, limg_,o0 h; j(A* % (w)) =
0 if j > 1. Thus, we see that both M and M™ for large n can have nonzero entries
only in the first column. These potentially nonzero entries are of the form ]\Z 1(w) =
Filw) TT52 g 7oh1a(A* Iw) and M7y (w) = x g, (A ") fi(w) T, J5h1a (A" w),
where the functions f; hold the contribution of the first jo — 1 matrix factors that
are not 0 outside the first column. Since for j suﬁiciently large, hy 1(A* w) = Vd,

the product converges a.e., so by Lemma 3.3, Ml 1= M, isin L? (R") We will use
M; 1 to dominate the M, 1 and thus show that the components of Mn converge in

M; 1(‘*’) *7
—~ = — if weA"E
L2(R™). We have that M (w) = § =nm 73 (472¢) , which
0 if w¢ A"E

concludes the proof, since by our definition of k11 = Xx4«-15, and the fact that
E, C A*Eq, we have that HJ et \/—hl 1(A*Jw) =1o0n A*"E.

The canonical GCMFs constructed in Theorem 3.6 result in generalized scaling
functions whose Fourier transforms are characteristic functions, and thus produce
wavelet set (frame) multi-wavelets. To meet our goal of building wavelets between
the known wavelet set and MRA examples, we will alter this canonical GCMF using
classical conjugate mirror filters such as those employed by Daubechies. In general,
there are many ways to accomplish this. In the following corollary, we give one
possible construction (or algorithm) for the case in which m(w) < 2 almost every-
where. The condition m(w) < 2 ensures that the restriction on m in Theorem 3.6
is always met whenever m has the potential to be associated with an (orthogonal)
wavelet or multiwavelet. Recall that we write « for the homomorphism on [—m, 7)"
that sends w to A*w mod 27.

COROLLARY 3.7. Let m be a multiplicity function (i.e. a function on [—m, )"
satistying the conditions of Proposition 3.1) with m(w) < 2 a.e., m(w) > 1 a.e.,
and m(w) > 0 on a neighborhood of the origin. Let {h11,h1,2,h21,h22} be the
canonical GCMF constructed in Theorem 3.6. For each w € support(hq,1), choose
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(measurably in w) any 2, € ker(a) such that w+ z, € S1. Let p be any measurable
complex valued function defined on [—m,7)" (and extended periodically to R™)
satisfying

(1) Forw € support(hu,y), [p(@)]? + |p(w + 2,)|2 = d if 2, # 0 and |p(w)? = d
if z, =0.

(2)  p is differentiable at w = 0 and |p(0)| = V/d.

(38) 3 a measurable set B C E; (possibly empty), a nonnegative integer J,
and a positive constant \ such that |p(A*~w)| > X for allw € E; \ B and
all j > 1, and for each w € B there exists a j between 0 and J for which
P(A () =0.

Define

I

' () { p(w) ifw € support (h11)U{v+ z, :v € support (hi1)}
w) =
0 otherwise

—p(w + z,) ifw € support (h11), 2z, # 0, A*(w) € Sy
hy 1 (w) =< p(v) ifw=v+ z,,v €support (hi1), 2z, # 0, A*(w) € S
ha1(w) otherwise

and hy 5 = hy 5 = 0. Then, {h} 1, R} 5,h5 1, hy 5} form a GOMF that satisfies the
hypotheses of Theorem 3.4.

PROOF. Note that, by the consistency equation, the ¢; of the proof of Theorem
3.6 satisfies ¢; > 1 if w € Ss. Thus, we have the canonical GCMF constructed there
satisfying h12 = hoo = 0. Recall also that for each w € S, there is a unique
preimage of w under a, w;, which is in support(hy,1) = A*~1E; (mod 27), and note
that wi, + z,,, is also one of the preimages. With these observations, a routine
calculation shows that {h} ;,h o, h5 1, h5 5} satisfies the mirror equation

; dxs;(w) 1=k
%:Zh wl hkgwl) {O’Lik .

Since h} 5 = hj, = 0, we have that the components of the matrix product
M (§) = H;L 1 \}—h’(A* i(¢)) are of the form:

MPL(€) = || mhia (A7)
1,1 Jl;[l Ja

n

M3 (€) = \/Eh21A* e H (AT

:2

M75(8) = M35 (§) =

Thus, a.e. convergence of these components follows immediately from condition
(2). Condition (2) also ensures that M 1, the limit of the M7 (€), is nonzero on a
neighborhood of the origin.
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It remains to show that Z\Z"l = XE, (A**"ﬁ)ﬁhiﬁl(A*flf) 15—, \/—hl 1(A*9€)
converge in L?. Since we already know that J\,/.Tl”1 converge a.e., we will use the
Dominated Convergence Theorem. If A*~"¢ ¢ E;,we have that J\,/.Tl”1 (§) = 0. Thus,

it will suffice to show that J\’Z"1 (&) are all bounded by the same dominating function

on A*™Ey. For N > J and £ € A*™ B, condition (3) ensures that J\Z"l(f) =0. If
£ € A*E; \ B, we have

~ e Mia(€)
Mi,l(g) - Ml,l(A*ing).

Condition (3) together with condition (2) implies that there exists a constant A’ > 0

(independent of n) such that M; 1(A*~"€) > X for £ € A*"(E; \ B). Thus we can

use M (which is in L2(R"™) by Lemma 3.3) as a dominating function.

4. EXAMPLES

In this Section we will use the techniques of Sections 2 and 3 to build GCMFs
then GMRAs and finally wavelets for a variety of multiplicity functions. In our
first example, we build a 2-wavelet for dilation by 2 in L?(R?) using the canonical
GCMF from Theorem 3.6. It is well-known that any multiwavelet in 2 dimensions
built from an MRA must have exactly 3 elements. Of course the multiwavelet we
build here is associated to a GMRA that is not an MRA, so the fact that it has
only 2 elements in it is not a contradiction, but just a verification that GMRAs
give rise to unexpected wavelet phenomena. Unlike the known single wavelets in
2 dimensions, which all involve fractal-like sets, the 2-wavelet constructed here is
quite simple.

EXAMPLE 4.1. Define A = [-2F,2%) and B = [3,7) U [-m, =2%). Let S,
be the subset of R? consisting of the four squares given by B x B. Let S; be
Sa U A x A, and define a multiplicity function by m = xs, + xs,. It is easy to
verify that m satisfies the conditions of Proposition 3.1 for A = <g (2)), with
m(w) = > m(w;) — m(w) = 2. Thus, m is the multiplicity function associated to
the GMRA determined by a 2-wavelet for dilation by 2 in L?(R?).

By Proposition 3.1, here E; = Si, so the canonical hy; = 2X%Sl' As al-
ways, we take hyo = 0. Thus, for w € A x A, the vector ﬁ“{ is given by By =
(h1,1(%5),h11(5 + (m,7m)), h12(%5 + (m,m))) = (2,0,0), while for w € Sy, h{ =
(P11 (5), b1 (5 + (0,m)), hia (5 + (7,0)), haa (5 + (1)) = (2,0,0,0). The vec-
tor h“’ is defined only for w € Sy, and must be orthogonal to h{ there, so we

can take hY = (0,0,0,2), resulting in the function hy; being defined by ho1 =
QX([ﬁ )01, 2)) % (|22, 55)U(5, 2)) and hy 2 = 0. Following Theorem 3.4, we

2773 3

can now use this canonical GCMF to build the generalized scaling functions:

—~ < 1
§) = H §h1,1(%) = Xs:
J=1
and

)¢1(§) ([—— —m)U[m, 32) ) x ([=5%,—m)U[r, 42 )
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Next, we use Theorem 2.4 to build an associated CCMF {g; ;}. Since m = 2,
we need two vectors, g¢ and g§ which are orthogonal to our l_i‘f vectors. Recalling
the form of the vectors f_i‘;’, we see that on A X A, we can take gy = (0,2,0) and
g5 = (0,0,2); on Sy we can take g¢ = (0,2,0,0) and g§ = (0,0,2,0); and on the
rest of [, )% we can take g¥ = (2,0) and g¥ = (0, 2). This results in the following
CCMF:

911 = 2Xs30(4Bx (178, 5015, 59)))U(4x $B)U(4Bx 44)

g12=0

9210 = 2X(((=2=,52)U13. 5)) x  B)U($4x (1222, 55)U15. 28)) )u (1222, 55)U(5. ) x $4)

92,2 = 2Xs,
Finally, using Corollary 3.5 we will build a 2-wavelet for dilation by 2 in R2. We

have R . £ ¢
Y1(§) = 591,1(5)%(5),
and
722(5) = % <92,1(§)¢A51(§) + 92,2(%)252(5)) .
If we let the set C = [_74“, —m) U [, 47“), then we can write zzl and 1//); as
721 = X2S2U((AUC)x B)U(BxA)>»
and

P2 = X(20x2C)U([—m,7) x CYU(C x A) -

See the picture below.

. .ﬂ'

Zm
L] E

-Egm Zm
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EXAMPLE 4.2. We give next an example of an FMRA wavelet, constructed via
Theorem 3.6 and Corollary 3.7. This example will be relative to dilation by 2 in
L2(R), although totally analogous constructions work in higher dimensions and for
more general dilation matrices. For other examples of FMRA’s in the literature, see
[BL], [PSWX], [PSW], and [Han]. Recall that an FMRA is a GMRA for which there
is a single generalized scaling function ¢ € Vp. The multiplicity function associated
to an FMRA is the characteristic function s of some subset of Z = [—m, 7). (See the
end of Section 2.) In order that m = y g satisfy the necessary counsistency inequality,
we see that for each w € S, we must have at least one of the two preimages % or
%+ is in S. In addition, our construction techniques require that m be nonzero on
a neighborhood of the origin, i.e., that S contains a neighborhood of 0. Finally, to
ensure that m = y g satisfies the necessary conditions in the hypotheses to Theorem
3.1 to be a multiplicity function, we will assume that, as a subset of R, § C 25.

To make the construction interesting, it is necessary to ensure that Corollary 3.7
can be used in a nontrivial way, i.e., that the support of h = h;; contains some
points w for which nonzero elements z,, exist.

Consider the multiplicity function m given by the characteristic function of the

set
(% —4m Am (%

7 Ul 77 YUl 7
This set will show up again in the next example, where it will be the support of
the Journé multiplicity function. Our aim here is to use Corollary 3.7 to construct
a generalized scaling function ¢ and an associated frame wavelet ¢ whose Fourier
transforms are as smooth as possible. It is not clear to us whether or not these func-
tions can be smooth everywhere in R. What we can show is that, given any bounded
interval (a, b), there exists a generalized scaling function ¢ and a frame wavelet 1)
associated to this multiplicity function m both of whose Fourier transforms are C'**°
on the interval (a, b).

The canonical GCMF h associated to m described in Theorem 3.6 is the 27w
periodization of the function h = v/2x 15- Let the kernel element z, as in Corollary
3.7bemifw e [-Z,Z)U+[3E, Z) and 0 otherwise. Following the ideas in Corollary
3.7, we let p be a periodic real-valued C*° function defined on [, 7) that satisfies
the MRA mirror equation |p(w)[? + |p(w+m)[? = 2, and p(0) = v/2. As in Corollary
3.7, we define a new GCMF as follows:

S =[-m, ,T).

P we -3 B)UHE ) U,
Mw)=4¢ V2 we +[Z, 277‘)
0 otherwise

To ensure that A’ is as continuous as possible, we impose the following additional
conditions on the function p.

(1) p(+Z) =2, and consequently p(+&F) = 0.

(2) p(£%) =0, and p(+4F) = V2.
Observe that b’ is C*° everywhere except for jump discontinuities (with all deriva-
tives zero in a neighborhood of the discontinuity) at points congruent mod 27 to
i%’r and i47”.
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Recalling that the Fourier transform QAS of the generalized scaling function will be
defined by
=I1 =n(x
0 =TI 75

we see that the only potential discontinuities of a will occur at points where one
of these factors has a jump discontinuity, i.e., at points that are congruent to iQT’T,
i%’r or i%’r mod 2.

We wish now to impose extra conditions on the function p (equivalently on h')
so that the Fourier transforms a and QZ will be as smooth as possible, i.e., C* on a
prescribed bounded interval. Thus, fix a positive integer K. Assume the following
extra conditions on p.

(1) p(r+=5r)=h(r+=5)=0foral0<k<K.

(2) plErmrer) =M (E7mre) =0.
Since we already have h/(+3Z) = h/(+3Z) = 0, condition (1) actually holds for
—2<k<K.Aswe have noted, $ is not C™ (or even continuous) at a pomt & only
if for some j > 1, 2—] is congruent to :i:27r or :I: mod 27. However, qﬁ would be
C° at such a point ¢ if there exists a k > J such that h’ is C°° and equal to 0 at

fk—, since
PR O BV SO oy
(&) = 11;[1\/_§h (z0)e(55)
k
T 5+ Ga).

l

Il
—

Now, for any ¢’ = 2% of the form & = 2n7w + 2—” with 0 < |n| < 2K we write n
uniquely as 2% x [ where [ is odd. Then ¢(¢') has a factor of h'(7r + =757 ), which

is 0, showing that QAS is C°° at £. The same argument shows that ¢ is C*° at & for
&' of the form 2nm + 4—” or 2nm + 87“, for 0 < |n| < 2K, Finally, if ¢ is of the form
:1:27”, +4 or £8 (ie, n = 0), then ¢(£) contains the factor h'(=%=r), making
¢ C at &. Therefore, ¢ is C°° on the interval (—2K+1x,2K+17). Note also that

3(5) = 0 for any £ in this interval that is congruent mod 27 to iQ’T i , or i67”.
From the consistency equation, we see that the complementary multiplicity

function m only takes on the values 0 and 1, and in fact that m(w) = 1 for
w € [-3£,2) U £[%, 7). In accordance with Theorem 2.5, we define a CCMF

g as follows:

p(w + ) w €0, %)U[3—7r 4—”)U[67”,7r)

707
g(w): *p(w—l—ﬂ') w€[771-776777)u[,47ﬁ’73777)u[7%70)
V2 w € +[ZE, 3
0 otherwise

Note that g has jump discontinuities only at points that are congruent mod 27 to
i%’r and iGT’T.
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Because the discontinuities of the CCMF g are at :|:77r and :i:6—7r mod 2m, it
follows that qp, which is given by 1[)(5) = ( )qﬁ(%) is C* on the interval
(—2K+2g oK+2p),

Finally, to be sure that Corollary 3.7 applies, we must find a set B that satisfies
the conditions of that corollary. This will require yet some further conditions on
p. Namely, assume that there exists an e > 0 such that p(w) = h'(w) = 0 on
+(8 — €, + ) U(m — e,m +€), and that A'(w) # 0 for all points not previously
mentloned. We set B = :I:[677r, 67” + €) UL (5% — 5579, 7s% + 577, and check
directly that this B satisfies the requirements of Corollary 3.7.

EXAMPLE 4.3. The Journé wavelet is the inverse Fourier transform of the char-
acteristic function of the set [=22Z, —47) U [, =2Z) U [4Z, 7] U [47, 32Z), and has
multiplicity function

2 wel-¥& )

70T
mw)=4¢ 1 we :i:[277’, 47") U :E[GT",F) ,
0 otherwise
so that Sy = [-m, =&) U [==,4Z) U [8Z,7r) and S; = [=2%,2E). Note that S

coincides with the set S of the preceding example.

We wish to construct an orthonormal wavelet 1, whose associated multiplicity
function is the Journé multiplicity function m, and whose Fourier transform is as
smooth as possible. We will use the constructions in Example 4.2.

The canonical GCMF h described in Theorem 3.6 is given by the 27 periodiza-
tions of the following:

hia = V2x 18,

hat = V2, g2 2 )
hl’g = hg’g =0.
Note that hj; coincides with the GCMF h in Example 4.2. As in that example,

let the kernel element z,, be 7 if w € [-Z, £) U=£[3F, Z) and 0 otherwise. Let p be

the C°°, periodic function of Example 4.2, and define a a new GCMF h ; for the
Journé multiplicity function by

V2 we £[E, )
@) = { pw) wel-5 5 U3 &) UL,

707
0 otherwise
plw+m) wel0, U 67”#?)
Mpr(w)={ —plw+m) wel-m—E)U[-2,0),
0 otherwise
and
h'L2 = h’Q’2 =0.

Because the function h; ; agrees with the function A’ of Example 4.2, we see that
it is C'°° except at points that are congruent to :i:277r or :|:477r mod 27. It is clear
that h’Q’1 is C°° except at points that are congruent to iGT’T mod 2.
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The GCMF {h] ;} is lower triangular, and the function a coincides with the
function g’b\ of Example 4.2, and so is C* on the interval [-2K+1x 2K+17) The
function ¢- is given by
€

$2(6) = M1 (3)61(3).

N |

showing that gﬁ; is C*° on the same interval, because a is 0 where h’2’1 has its
discontinuities.

Now we will construct the Fourier transform of the wavelet v, by building a
CCMF {g1,;}. Again, following the construction in Theorem 2.5, we may take for
g1,1 the function defined by

plw+ ) w € [, 4x)

707
—plw+m) wel[-E )
g11(w) =19 V2 we 3,3
—V2 we[-3Z, 21
0 otherwise

and

we [ 2 2x
91’2((‘)):{\/5 €-5%)

0 otherwise

Note that the only points of discontinuity of g1,; and g;,2 are points congruent to
i27" mod 2. Therefore 1, which is given by

36 = 5 (113G + 0253 )

is O on the interval [—25+27 2K+27),
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