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Abstract. An abstract formulation of generalized multiresolution analyses is pre-

sented, and those GMRA’s that come from multiwavelets are characterized. As an
application of this abstract formulation, a constructive procedure is developed, which

produces all wavelet sets in Rn relative to an integral expansive matrix.

Introduction

In 1996, Dai, Larson and Speegle ([DLS1]) proved the existence of wavelet
sets in Rn. That is, they proved that there exist sets W ⊆ Rn for which the
indicator function χW is the Fourier transform of a (single) wavelet ψ ∈ L2(Rn).
This surprising result will undoubtedly have important applications, for in many
cases it allows a reduction from multiwavelets to a single wavelet. Explicit examples
of such wavelet sets in Rn have since been given by Dai, Larson, and Speegle [DLS2],
Soardi and Weiland [SW], and others. In Section 2 of the present paper, we present a
constructive procedure that produces all wavelet sets in Rn for which the expansive
matrix A is integral. The construction is made using a pair of maps T and T ′ that
are in a sense complementary with respect to the dilation matrix A.

In Section 3, we present several examples of wavelet sets constructed in this
manner, and produce some new wavelet sets in R1, which generalize to give new
wavelet sets in all dimensions. In addition we indicate how all previously known
wavelet sets can be constructed using our technique.

Our construction comes from a theoretical investigation of wavelets and mul-
tiresolution analyses that concentrates on the unitary representation of the group
of translations determined by its action on a fundamental invariant subspace. In
Section 1, we develop a notion of generalized multiresolution analysis (GMRA),
and identify which GMRA’s determine multiwavelets. The criterion turns out to
be a consistency equation that the multiplicity function associated to the represen-
tation satisfies. It is this consistency equation that we exploit in Section 2 for our
constructive procedure.

This research was partially supported by NSF grants DMS9201720 and DMS9401180.
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1. Generalized Multiresolution Analyses
and Orthonormal Multiwavelets

We present here a notion of generalized multiresolution analyses (GMRA’s),
which enables us to study all multiwavelets, including those that do not arise from
scaling functions. In fact, we obtain a correspondence between the set of all multi-
wavelets and a specified subset of the set of all GMRA’s.

Let H be a separable Hilbert space. Fix a countable abelian group Γ of unitary
operators onH, which we call translations., and a unitary operator δ onH, which we
call a dilation. We assume that the dilation is commensurate with the translations
in the sense that the group δ−1Γδ is a subgroup of finite index d in Γ.

In the main example of this paper, we will take H to be L2(Rn) and Γ to be
the group of translations by elements of the lattice Zn. Let A be an n× n integer
dilation matrix such that all the eigenvalues of A have absolute value greater than
1. Finally, write δA for the unitary operator on L2(Rn) given by

[δA(f)](x) = |detA| 12 f(Ax).

We see that δ−1
A ΓδA is a subgroup of Γ of finite index d = |detA|; thus Γ and δA

satisfy the abstract assumptions above.

DEFINITION. By a generalized multiresolution analysis (GMRA) ofH, relative
to Γ and δ, we shall mean a collection {Vj}∞−∞ of closed subspaces of H that satisfy:

(1) Vj ⊆ Vj+1 for all j.
(2) δ(Vj) = Vj+1 for all j.
(3) ∪Vj is dense in H and ∩Vj = {0}.
(4) V0 is invariant under the action of Γ.

If the closure of ∪Vj is a subspace of H, we say that the collection {Vj} is a
subspace GMRA.

The classical definition of an MRA includes the assumption that there exists a
scaling vector φ whose translates form an orthonormal basis for V0. While a GMRA
will not in general have a scaling vector, we can obtain similar information about
its structure by studying the unitary representation ρ determined by the action of
Γ on V0. We refer to V0 as the core subspace and the representation ρ as the core
representation of Γ relative to the generalized multiresolution analysis {Vj}. In the
MRA case, the core representation is equivalent to the regular representation Λ of
Γ, which acts in L2(Γ) by translation. (The equivalence is effected by mapping
the scaling function φ to the characteristic function of the identity in L2(Γ).) As
we will see below, a variety of other core representations are possible, and in fact
those GMRA’s that arise from wavelets can be characterized in terms of their core
representations.

For each j ∈ Z, we write Wj for the orthogonal complement of Vj in Vj+1. We
have then that

H =
∞⊕

j=−∞
Wj = V0 ⊕

∞⊕
j=0

Wj .

For j ≥ 0, each Vj and therefore each Wj is invariant under Γ. Just as in the MRA
case, the decomposition V1 = V0⊕W0 will be particularly useful in relating GMRA’s
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to wavelets. Accordingly, we let ρ′ and σ denote the unitary representations of Γ
determined by its action on V1 and W0 respectively.

We next employ some tools from abstract harmonic analysis. By the spectral
theorem for commutative groups, the representation ρ can be decomposed as a
direct integral over Γ̂, the group of characters of Γ. (See e.g. [M], [Ha], [He].) More
precisely, there exists a unique projection-valued measure p on Γ̂ for which

ργ =
∫

Γ̂

γ(χ) dp(χ).

The representation ρ′ is similarly determined by a projection-valued measure p′ on
Γ̂.

We will analyze ρ by letting Γ act on both sides of the decomposition V1 = V0⊕
W0. To relate the actions of Γ on V0 and V1, we use conjugation by δ. Accordingly,
let α : Γ 7→ Γ by α(γ) = δ−1γδ. Write α∗ for the dual map on Γ̂, given by
[α∗(χ)](γ) = χ(α(γ)). Finally, let α∗∗(p) denote the projection-valued measure on Γ̂
given by α∗∗(p)(E) = p(α∗−1(E)).

PROPOSITION 1.1. The representation ρ′ of Γ satisfies

ργ ⊕ σγ ≡ ρ′γ ≡
∫

Γ̂

γ(χ) d[α∗∗(p)](χ).

PROOF. By writing V1 = V0 ⊕W0, we see immediately that ρ′ restricted to Γ is
equivalent to the direct sum ρ⊕ σ. Since δ−1ρ′γδ = ρα(γ), the two representations
ρ′ and ρ ◦ α of Γ are unitarily equivalent. Thus the projection valued measure p′

is unitarily equivalent to α∗∗(p). The equivalence of ρ′ to the direct integral above
then follows. �

By the spectral multiplicity theory developed by Stone [S] and Mackey [M] (see
also [He] and [Ha]), the projection-valued measure p is completely determined by
a measure class [µ] on Γ̂, and a multiplicity function m mapping Γ̂ into the set
{0, 1, 2, . . . ,∞}. This multiplicity function roughly counts the number of times
each character occurs in the representation ρ.

DEFINITION. We call the multiplicity function m of the preceding paragraph
the core multiplicity function corresponding to the GMRA {Vj} and the measure
class of [µ] the core measure class.

Note that a GMRA is an MRA if and only if its core measure class is that of Haar
measure and the core multiplicity function m is 1 almost everywhere. This follows
from our definitions since Haar measure and m ≡ 1 is equivalent to ρ being the
regular representation of Γ. GMRA’s with other multiplicity functions and measure
classes provide a tool for studying the wide range of wavelets that are not associated
with MRA’s.

DEFINITION. By a multiwavelet for H relative to Γ and δ, we mean a finite
collection {ψ1, . . . , ψN} of vectors in H such that the collection {δj(γ(ψi))}, for
j ∈ Z, γ ∈ Γ, and 1 ≤ i ≤ N, forms an orthonormal basis for H. The collection
{ψ1, . . . , ψN} is called a subspace multiwavelet if these vectors form an orthonormal
basis for a subspace of H.
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PROPOSITION 1.2. Let {ψ1, . . . , ψN} be a multiwavelet for H, relative to Γ
and δ, and set Vj equal to the closed linear span of the vectors δk(γ(ψi)), for k <
j, γ ∈ Γ, and 1 ≤ i ≤ N. Then the collection {Vj} is a generalized multiresolution
analysis of H. Moreover, if H = L2(Rn), Γ = Zn and δ = δA, then the core measure
class is absolutely continuous with respect to Haar measure.

PROOF. The fact that the collection of subspaces {Vj} meet the requirements for
a GMRA (for any H,Γ, and δ) is well known and straightforward (see for example
[BCMO].) Thus it remains to be shown that the core measure class is absolutely
continuous with respect to Haar measure under the special assumptions on H,Γ,
and δ.

By taking Fourier transforms, the representation of the group Γ = Zn on all of
H = L2(Rn) is equivalent to multiplication by exponentials ei〈x,γ〉 on L2(Rn). By
parametrizing Γ̂ = [−π, π)n with addition mod 2π, the regular representation of
Γ can be seen to be equivalent to multiplication by exponentials on L2([−π, π)n).
Thus, by writing Rn as the disjoint union of translates of the cube [−π, π)n by
elements of Γ, we have that the representation of Γ on all of H is equivalent to
an infinite multiple of the regular representation of Γ. Therefore, the projection-
valued measure associated to the representation of Γ on all of H is equivalent to
Haar measure on the dual Γ̂, so that the projection-valued measure associated to
any subrepresentation of this representation will have a corresponding measure that
is absolutely continuous with respect to Haar measure. �

We see then that those GMRA’s that arise from multiwavelets in Rn have core
representations that are completely determined by their core multiplicity function
m. The main theoretical result of this paper is the following theorem, which uses
the multiplicity function to describe precisely how the two notions of multiwavelets
and generalized multiresolution analyses are related. Let µ be a representative of
the core measure class, and λ be Haar measure on Γ̂.

THEOREM 1.3. If {ψ1, . . . , ψN} is a multiwavelet for a Hilbert space H then
the collection of subspaces {Vj} determined by the ψi’s as in Proposition 1.2 is a
generalized multiresolution analysis, whose core multiplicity function m satisfies the
following consistency equation almost everywhere with respect to the measure µ+λ:

(∗) m(χ) +N =
∑

φ∈α∗−1(χ)

m(φ).

Conversely, if {Vj} is a generalized multiresolution analysis of a Hilbert space
H whose core multiplicity function m is finite almost everywhere and satisfies the
consistency equation (∗), almost everywhere with respect to the measure µ+λ, then
there exist vectors ψ1, . . . , ψN in the subspace W0 that form a multiwavelet for H.
Moreover, the GMRA {Vj} coincides with the GMRA determined from these ψi’s
as in Proposition 1.2. The analogous statements hold for subspace GMRA’s and
subspace multiwavelets.

PROOF. Suppose first that ψ1, . . . , ψN is a multiwavelet for H. Then, we have seen
in Proposition 1.2 that the subspaces {Vj} determined by the ψi’s form a GMRA.
We have also seen in the proof of Proposition 1.1 that ρ′ ≡ ρ ⊕ N × Λ, and also
that ρ′γ ≡

∫
Γ̂
γ(χ) d[α∗∗(p)](χ). Thus, the measure class of ρ′ must be that of µ+ λ,
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and the multiplicity functions for the two characterizations of ρ′ give exactly the
two sides of the consistency equation (∗).

Conversely, suppose that {Vj} is a GMRA whose multiplicity function m is finite
almost everywhere and satisfies the consistency equation (∗). It follows from the
consistency equation that ρ′ is equivalent to ρ⊕N × Λ. By writing V1 = V0 ⊕W0,
we also have that ρ′ is equivalent to ρ ⊕ σ. Because the multiplicity function m
is finite almost everywhere, the representation ρ′ generates a finite von Neumann
algebra, and this implies that σ ≡ N×Λ; that is we may cancel the direct summand
ρ. (See Section 1 of [BCMO] for a similar argument.) Therefore, there must exist
vectors ψ1, . . . , ψN ∈ W0 such that the vectors {γ(ψi)}, for γ ∈ Γ and 1 ≤ i ≤
N, form an orthonormal basis for W0. Since the operator δ is unitary, and since
the spaces {δj(W0)} are orthogonal and span all of H, it follows that the ψi’s
form a multiwavelet. It is immediate that the GMRA determined by the vectors
ψ1, . . . , ψN coincides with the given GMRA. �

2. Construction of Wavelet Sets

We now explore some applications of the theoretical results of Section 1 to our
main example of H = L2(Rn), Γ = Zn, and δ = δA. We will be particularly
interested in studying single wavelets determined by wavelet sets. Following Dai
and Larson [DL], we define a wavelet set to be a set W ⊂ Rn such that χW = ψ̂,
where ψ is a (single) wavelet for Rn. By a subspace wavelet set, we will mean a
set W ⊂ Rn such that χW = ψ̂ for a subspace wavelet ψ. The first Theorem of
this section translates the abstract requirement that the core multiplicity function
associated with a wavelet satisfies a consistency equation into this Euclidean space
setting.

We write x ≡ y if x− y = 2πj for some j ∈ Zn. Write Q for the cube [−π, π)n,
and for x ∈ Rn, let x̄ denote the unique element of Q such that x̄ ≡ x. We write
A∗ for the transpose of the matrix A.

THEOREM 2.1. The set W ⊂ Rn is a subspace wavelet set if and only if the in-
dicator function χE of the set E = ∪j<0(A∗)j(W ) satisfies the following consistency
equation:

(∗∗) 1 +
∑

k∈Zn

χE(x+ 2πk) =
∑
j∈Zn

χE((A∗)−1(x+ 2πj))

for almost all x ∈ Rn. In particular, W is a wavelet set for all of Rn if and only
if in addition, ∪j∈Z(A∗)j(E) contains, up to a set of measure 0, a neighborhood of
the origin.

PROOF. Let {Vj} denote the (subspace) GMRA determined by the (subspace)
wavelet ψ whose Fourier transform is χW . Then, since V0 =

⊕
j<0 δ

j(W0), we see

that V̂0 coincides with L2(E). Moreover, it follows from Section 1 that the Fourier
transform of the core representation ρ of the group Zn is given by multiplication
on L2(E) as follows:

[ρk(f)](x) = ei〈k,x〉f(x),

so that the core multiplicity function m on [−π, π)n is given by

m(x) =
∑

k∈Zn

χE(x+ 2πk).
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The sum on the right-hand side of the consistency equation (∗) is over all y ∈
[−π, π)n such that < y,Aj >≡< x, j > mod 2π for all j ∈ Zn. The Rn case of the
consistency equation (∗∗) then follows.

If ψ is a wavelet for all of L2(Rn), then the union of the dilates of W is, by
[DLS1], all of Rn. Since the union of the dilates of E (by A∗) contains the union of
the dilates of W, it follows that ∪j∈Z(A∗)j(E) contains a neighborhood of 0.

Conversely, given a set W such that E = ∪j<0(A∗)j(W ) satisfies the consistency
equation (∗∗), we define a (subspace) GMRA as follows: Define Vj by setting V̂j to
be δ−jL2(E). We have that {Vj} is a GMRA, and L2(W ) = Ŵ0. As above, we see
that the core multiplicity function m for this GMRA is given by

m(x) =
∑

k∈Zn

χE(x+ 2πk).

The requirement that χE satisfy the consistency equation (∗∗) says exactly that
m satisfies the consistency equation (∗) of Section 1, and so by Theorem 1.3 this
GMRA determines a single (subspace) wavelet with Fourier transform χW .

Since E is itself a union of dilates ofW, it follows immediately that if ∪j∈Z(A∗)j(E)
contains a neighborhood of 0, then ∪j∈Z(A∗)j(W ) contains a neighborhood of 0. It
follows then from [DLS1] that W is a wavelet set for all of Rn. �

We will use Theorem 2.1 to give an explicit technique for constructing all wavelet
sets in Rn by building sets E whose indicator functions satisfy the consistency
equation (∗∗). The construction is based on the following definition.

DEFINITION. Let E be a subset of Rn that is invariant under (A∗)−1. By an
A-complementary pair for E we mean a pair (T, T ′) of measurable one-to-one maps
T : Q→ Rn and T ′ : E → E satisfying (up to a set of measure 0):

(1) T (Q) ⊆ E, and T ′(E) ⊆ E \ T (Q).
(2) A∗(T (x)) ≡ x and A∗(T ′(x)) ≡ x.
(3) E = ∪j≥0T

′j(T (Q)).

THEOREM 2.2. If (T, T ′) is an A-complementary pair for a set E ⊆ Rn, then
W = A∗(E) \E is a (subspace) wavelet set. Conversely, if W ⊆ Rn is a (subspace)
wavelet set, then there exists an A-complementary pair (T, T ′) for the set E =
∪j<0(A∗)j(W ). In fact, T ′ can always be taken equal to (A∗)−1.

PROOF. Suppose W is a subspace wavelet set. Then E = ∪k<0(A∗)k(W ) is in
fact a disjoint union [DL], and is invariant under (A∗)−1. By Theorem 2.1, χE

must satisfy the consistency equation (∗∗). We will use these facts to define an
A-complementary pair of maps T and T ′ for E.

It follows from (∗∗), and the fact that the multiplicity function m is finite al-
most everywhere, that for each x ∈ Rn, there exists a unique point w of the form
(A∗)−1(x + 2πj) such that w belongs to E but A∗(w) = x + 2πj itself does not
belong to E. For each x ∈ Q, let T (x) be this unique point w = (A∗)−1(x + 2πj).
Define T ′ on E by T ′(x) = (A∗)−1(x). The maps T and T ′ are one-to-one and
satisfy condition (2) of the definition of A-complementary pair.

To establish condition (3), it will suffice to show that T (Q) = (A∗)−1(W ). First,
we take x ∈ Q and show that T (x) ∈ (A∗)−1(W ). Indeed, T (x) ∈ E by definition,
and it is not of the form (A∗)−1(w) for any w ∈ E. Thus T (x) is in ∪j<0(A∗)j(W )\
∪j<0(A∗)j−1(W ) and hence (since the union is disjoint), in (A∗)−1(W ). Next, we
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take y ∈ (A∗)−1(W ) and show that y ∈ T (Q). Let x = A∗(y), and note, again by
the disjointness of the dilates of W, that x /∈ E. Recall that T (x̄) is the unique
point in E of the form (A∗)−1(x + 2πj) where x + 2πj /∈ E. Hence T (x̄) must be
(A∗)−1(x) = y, so that y does belong to T (Q). Finally, the equality just established
of T (Q) = (A∗)−1(W ) also implies condition (1). We have thus verified that the
pair (T, T ′) is an A-complementary pair for E.

Conversely, let (T, T ′) be an A-complementary pair for the set
E = ∪j≥0T

′j(T (Q)). We show first that χE satisfies the consistency equation (∗∗).
Note that for each x ∈ E, there is exactly one element of the form (A∗)−1(x+2πj)
that is in T (Q), namely T (x̄). For, if z ∈ T (Q) is of the form (A∗)−1(x + 2πj),
then z = T (w) for some w ∈ Q, implying that A∗(z) ≡ w. But A∗(z) ≡ x, and this
implies that w = x̄, so that z = T (x̄) as claimed.

For each x ∈ Rn, this unique element of the form (A∗)−1(x + 2πj) in T (Q)
contributes 1 to the sum on the right side of the consistency equation, which can
be used to cancel the (extra) 1 on the left hand side, so that the equation can be
modified to become∑

k∈Zn

χE(x+ 2πk) =
∑
j∈Zn

χE\T (Q)((A∗)−1(x+ 2πj)).

For any x ∈ Rn, if y = (A∗)−1(x+ 2πj) ∈ E \ T (Q), then y = T ′m(z) for some z ∈
T (Q) and some m > 0. So, x ≡ A∗(y) ≡ T ′m−1(z), which shows that x+ 2πk ∈ E
for some k ∈ Zn. Thus, if the left hand side of the modified consistency equation is
0, the right hand side must be 0 as well. If not, let x1, x2, . . . be a complete list of
the elements of the form x+2πk that are in E. Then T ′(x1), T ′(x2), · · · are distinct
elements of E \ T (Q). Each of T ′(x1), T ′(x2), . . . is of the form (A∗)−1(x + 2πj).
And, if z is any element of this form in E \ T (Q), then z = T ′(w) for some w ≡ x,
so that z is one of the T ′(xi)’s we have listed. Thus the nonzero terms on the left
hand side of the modified consistency equation are in one-to-one correspondence
with the nonzero terms on the right, and so the consistency equation is satisfied.

Because E is invariant under (A∗)−1, we have that E ⊆ A∗(E). Let W =
A∗(E) \E. The proof will be complete, by Theorem 2.1, if we can show that, up to
a set of measure 0, E = ∪k<0(A∗)k(W ). It is evident that this union is contained
in E. Moreover,

E \ ∪k<0(A∗)k(W ) = E \ ∪k<0(A∗)k(A∗(E) \ E)

= ∩k<0(A∗)k(E).

We know by condition (2) of the definition that for any measurable set F ⊆ E,
µ(T ′(F )) = 1

| det A|µ(F ). Hence E = ∪j≥0T
′j(T (Q)) must have finite measure. It

then follows that ∩k<0(A∗)k(E) has measure 0. �

We now prove that every map T : Q→ Rn of the form T (x) = (A∗)−1(x+2πjx)
where for each x, jx ∈ Zn, is part of an A-complementary pair. In the process,
we describe a method for constructing A-complementary pairs and hence, via the
two preceding theorems, wavelet sets. We will explicitly carry out this kind of
construction in the next section.

THEOREM 2.3. If T is any measurable map of Q into Rn satisfying A∗(T (x)) ≡
x for almost all x, then there exists a set E ⊆ Rn and a map T ′ : E → E such that
(T, T ′) is an A-complementary pair for E.
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PROOF. We will define T ′ first on E0 ≡ T (Q), and then recursively on E1, E2, · · · ,
where Em = ∪m

j=0T
′j(T (Q)) \ ∪m−1

j=0 T
′j(T (Q)), m > 0. In order to ensure that

the resulting pair (T, T ′) will be an A-complementary pair for E = ∪∞m=0Em =
∪∞j=0T

′j(T (Q)), it will suffice to define T ′ such that for each x ∈ Em :

(i) If (A∗)−1(x) /∈ ∪m
j=0Ej then T ′(x) = (A∗)−1(x).

(ii) A∗(T ′(x)) ≡ x.
(iii) T ′(x) 6= T (x̄).
(iv) T ′(x) 6= T ′(x+ 2πl) if l 6= 0 and x+ 2πl ∈ ∪m

j=0Ej .

For, then E will be invariant under (A∗)−1 by (i), and T ′ will be a one-to-one map
by (iv). Condition (1), (2), and (3) of the definition of an A−complementary pair
will follow from (iii), (ii), and the definition of E, respectively.

We will use an induction argument to prove that it is always possible to define T ′

in this way. Thus, fixm ≥ 0, and suppose that T ′ has already been defined to satisfy
(i)-(iv) on ∪m−1

j=0 Ej . (In the m = 0 case, this already defined set is empty.) We must
now define T ′(x) for x ∈ Em. We begin by defining T ′(x) to be (A∗)−1(x) whenever
condition (i) applies. Condition (ii) merely requires that T ′(x) be one of the infinite
number of elements in the set C(x) ≡ {(A∗)−1(x + 2πj) : j ∈ Zn}. Observe that,
although condition (iii) eliminates one element of C(x) as a possible choice for T ′(x),
it does not conflict with condition (i), since if (A∗)−1(x) /∈ E ⊇ E0 = T (Q), it is
impossible for (A∗)−1(x) to equal T (x̄). Condition (iv) also does not conflict with
condition (i), since (A∗)−1 is one-to-one. Thus, to complete the definition of T ′ on
Em, it will suffice to show that, when condition (i) does not apply, we can choose
T ′(x) to be an element of the set C(x) \ {T (x̄)} in accordance with condition (iv).
We make our definition simultaneously for all y ∈ Emsuch that y ≡ x. Note that,
because the measure of each Ej is finite, we have that for almost all x, C(x) ∩ Ej

is finite, and hence only a finite number of elements of C(x) can have already been
used as T ′(z) for z = (x + 2πk) and z ∈ ∪m−1

j=0 Ej . We thus finish the proof by
defining T ′(x + 2πk) for x + 2πk ∈ Em to be arbitrary distinct elements chosen
from the infinite set C(x) \ ({T (x̄)} ∪ (C(x) ∩ (∪m−1

j=0 Ej)). �

3. Examples

In this section we use the method indicated in Theorems 2.2 and 2.3 to construct
a variety of wavelet sets. That is, we use the ideas from Theorem 2.3 to define A-
complementary pairs (T, T ′), and then follow the construction outlined in the proof
of Theorem 2.2 to build the associated wavelet sets W. Our procedure is in some
ways similar to the theoretical construction of wavelet sets in [DLS1], as well as to
that in [SW].

Theorem 2.2 shows that an arbitrary A−complementary pair gives a wavelet
set, even though all wavelet sets can be defined using only A-complementary pairs
that have T ′ = (A∗)−1. This redundancy sometimes allows for simpler and more
natural constructions. In particular, the easiest way to build an A−complementary
pair is to start by defining T (x) = (A∗)−1(x) for x ∈ Q. We use this technique
in our first example, which builds many of the known wavelet sets as well as some
similar new ones.

EXAMPLE 3.1. We first use T (x) = (A∗)−1(x) to construct some wavelet sets
in R1 for dilation by 2, and then indicate the analogous constructions in higher
dimensions, and for other dilations.
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(i) We start with the map T defined by T (x) = x
2 for all x ∈ Q = [−π, π). We

then define T ′, in accordance with Theorem 2.3, by T ′(x) = x
2 + π for x < 0 and

T ′(x) = x
2 − π for x ≥ 0. This results in E = ∪j≥0T

′jT ([−π, π)) = [−π, π), so that
W = 2E \ E is the Shannon wavelet set.

(ii) Other simple wavelet sets for dilation by 2 in R can be built similarly. For
example, with the same definition of T, we fix n ≥ 0 and define T ′n(x) = x

2 for
x /∈ Q, and otherwise by T ′n(x) = x

2 − 2nπ for −π ≤ x < 0 and T ′n(x) = x
2 + 2nπ

for 0 ≤ x < π. The resulting wavelet set is:

Wn = [−2n+1π − αn,−2n+1π) ∪ [−π,−αn) ∪ [αn, π) ∪ [2n+1π, 2n+1π + αn),

where αn = 2n+1π
2n+2−1 . The case n = 0 appears in Example 4.5 (iv) in [DL]. The case

n = 1 is an example due to Journe (see e.g. Example 4.1 (i) in [DL]). Only the
n = 0 example comes from an MRA, since none of the other multiplicity functions
are identically 1. In particular, mn(x) = n+ 1 on [−αn

2n ,
αn

2n ).
(iii) We now consider some analogous constructions in R2 (which easily general-

ize to higher dimensions). Define T on Q = [−π, π)× [−π, π) by setting T (x) = x
2

for all x ∈ Q. The simplest definitions for T ′ result from first defining T ′ in the first
quadrant, and then using some symmetry requirement to extend it. If we require T ′

to be symmetric with respect to both axes, the first quadrant map T ′(x) = x
2 +(π, π)

if x ∈ Q and T ′(x) = x
2 if x /∈ Q yields the wavelet set of Dai, Larson, and Spee-

gle that they call the “four corners”([DLS2]). Replacing (π, π) by (−π,−π) yields
Soardi and Weiland’s first example ([SW]); replacing (π, π) instead by (π, 0) yields
the wavelet set Dai, Larson, and Speegle call the “wedding cake”set ([DLS2]). If
we change the symmetry requirement to 4-fold rotational symmetry, and define
T ′(x) = x

2 + (−π, 0) if x ∈ Q and T ′(x) = x
2 if x /∈ Q, we get the “windmill” set

pictured below.
(iv) Any of the examples above can be generalized to work for other dilations.

However, in many examples, generalizations to different dilations lead to wavelet
sets with very different shapes than in the d = 2 case. For example, to apply (ii)
to a dilation by d on R, we can again fix n ≥ 0 and take T (x) = x

d on Q. We
define T ′n(x) = x

d for x /∈ Q, and otherwise, T ′n(x) = x
d − dn−12π for −π ≤ x < 0

and T ′n(x) = x
d + dn−12π for 0 ≤ x < π. The wavelet sets for d 6= 2 have a

Cantor-like shape. For example, for d = 3, if we define the map Sn : R 7→ R by
Sn(x) = x

3n+1 + 2π
3 then we can describe the resulting wavelet sets by

Wn =
(
∪∞j=0S

j
n([

π

3
,
2π
3

))
)
∪

(
∪∞j=0(S

j
n([0,

π

3
)) + 3n · 2π)

)
EXAMPLE 3.2. At the opposite extreme from Example 3.1, perhaps, is the fol-
lowing construction. This time we define T (x) so that it is never equal to (A∗)−1(x).
Again, we start with R1 and dilation by 2.

(i) To begin with, set T (x) = x
2 + π for x ≥ 0 and x

2 − π for x < 0. Then T ′(x)
may always be defined by x

2 , and the resulting set E is the symmetric set whose
intersection with the positive reals consists of the union of the intervals [ π

2k ,
3π

2k+1 ),
for k ≥ 0. The resulting set W = 2E \E is then W = [−3π,−2π)∪ [2π, 3π), which
is only a subspace wavelet set, since it is not dilation congruent to the entire real
line. Note that, as Theorem 2.1 asserts, the union of the dilates of E does not
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contain any neighborhood of 0. It is interesting to note also that the multiplicity
functionm(x) =

∑
k∈Z χE(x+2πk) corresponding to the GMRA determined by this

subspace wavelet set w takes on all three values 0,1, and 2. For instance, m(x) = 2
for 1

2 < |x| < 3
4 . Hence, the subspace GMRA determined by this subspace wavelet

is not a subspace MRA.
(ii) If we alter our definition of T so that T (x) = x

2 − π if x ≥ 0 and x
2 + π if

x < 0, then again T ′(x) may always be defined as x
2 , and the set E is the entire

interval [−π, π), whence the wavelet set is again the Shannon set.
(iii) For a more complicated example, consider the following parameterized fam-

ily, which interpolates between the two previous ones. For 0 ≤ α ≤ 1, symmet-
rically define T (x) as follows: For 0 ≤ x < π set T (x) = x

2 + π if x ≥ απ and
x
2 − π if x < απ. Then the set T (Q) is the symmetric set whose positive part is
[(1 − α

2 )π, π) ∪ [(1 + α
2 )π, 3

2π). In accordance with the constructive procedure of
Theorem 2.3, we define T ′(x) to be x

2 if x < π. However, we may not be able to
set T ′(x) = x

2 for every x ≥ π. In fact, for α ≥ 1
2 , we see that x

2 is already in
the set T (Q) when (2 − α)π ≤ x < 3

2π. (For α ≤ 1
2 , this troublesome set of x’s is

empty.) Accordingly, we set T ′(x) = x
2 − π if (2 − α)π < x ≤ 3

2π, and T ′(x) = x
2

otherwise. When α ≥ 2
3 , the resulting set Eα contains the intervals [ 14π, (

1
2 −

α
4 )π)

and [( 1
2 −

α
4 )π, 1

2π), and hence the entire interval [14π,
1
2π), and therefore the union

of the dilates of Eα contains a neighborhood of 0. The positive part of the resulting
symmetric wavelet set Wα, for 2

3 < α, is then

Wα = [
1
2
π, (1− α

2
)π) ∪ [(2− α)π, (1 +

α

2
)π) ∪ [

3
2
π, 2π) ∪ [(2 + α)π, 3π).

The multiplicity functions for the GMRA’s determined by the Wα’s, for 2
3 <

α < 1, are identically 1, so that these GMRA’s are MRA’s. For α < 2
3 , the set Eα

is more complicated and its dilates do not contain a neighborhood of 0. However
the sets Wα still are finite unions of intervals. If 1

2 ≤ α < 2
3 , we have

Wα = [
1
2
π, απ) ∪ [

3
2
π, 2π) ∪ [(2 + α)π, 3π),

and for 0 ≤ α < 1
2 , we have

Wα = [(2− α)π, 2π) ∪ [(2 + α)π, 3π).

The multiplicity functions for all these GMRA’s take on the value 2 some places.
These Wα’s, for α < 2

3 , determine subspace wavelets, and, in fact, the limiting case
W0 is the wavelet described in (i) above. Also, W1 is the wavelet set described in
(ii). Therefore, there seems to be no simple continuity, as a function of α, of the
property of being a subspace wavelet as opposed to a full space wavelet, nor of the
multiplicity function mα.

Analogous constructions in R2, e.g., defining T (x) = x
2 + (π, π) for x in the first

quadrant, and so on, are possible. As in the 1-dimensional case, some constructions
give subspace wavelet sets and others give wavelet sets.

EXAMPLE 3.3. More interesting and complicated wavelet sets can be con-
structed by intermingling further the two ways of defining T in the preceding
examples, i.e., by defining T (x) to be x

2 some of the time and not x
2 the rest of
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the time. For instance, the following constructions produce wavelet sets W that
have 0 as a limit point.

(i) let {an}∞1 be the sequence defined by an = (1
2 + 1

2n )π. That is, the sequence

{an} = {π, 3
4
π,

5
8
π,

9
16
π, . . . }.

Define T (x) = x
2 for all

x ∈ ∪∞n=1 ∪∞j=n

1
2j+1

[an+1, an).

For other x ≥ 0, set T (x) = x
2 − π, and for all x < 0, set T (x) = x

2 . One sees that
the intersection of the set T (Q) with the negative half line contains the interval
[− 5

8π, 0), and that the intersection of T (Q) with the positive half line coincides
precisely with ∪∞n=1∪∞j=n

1
2j+1 [an+1, an). Therefore, the union of the dilates of T (Q)

contains each interval [an+1, an), and hence the interval [12π, π). Hence, this union
contains an interval around 0, so that the resulting set W = 2E \E is a wavelet set.
We may define T ′, arbitrarily but in accordance with the construction in Theorem
2.3, so that T ′(x) < 0 for all x, implying that E ∩ [0,∞) = T (Q) ∩ [0,∞) =
∪∞n=1 ∪∞j=n

1
2j+1 [an+1, an). One sees from this that W contains 0 as a limit point.

Indeed, W = 2E \ E contains all the intervals of the form 1
2n [an+1, an).

(ii) Analogs of the above construction in higher dimensions give examples like
the “hole in the middle”set of Soardi and Weiland ([SW]). Thus, taking {an} as
above, let Tn be the trapezoid in the first quadrant determined by the four points
(an, 0), (an+1, 0), (0, an), and (0, an+1), and let Un and Vn be the analogous trape-
zoids in the second and fourth quadrants. Define T (x) = x

2 if

x ∈ ∪∞n=1 ∪∞j=n

1
2j+1

(Tn ∪ Un ∪ Vn).

Define T on the rest of the cube Q in the first, second, and fourth quadrant s by
T (x) = x

2 +(−π,−π), and define T on the third quadrant by T (x) = x
2 . Now define

T ′ in any way consistent with the construction in Theorem 2.3 so that T ′(x) is
always in the third quadrant. As above, the union of the dilates of E contains a
neighborhood of 0, so that we produce a wavelet set W = 2E \ E. Moreover, as
above, the wavelet set W contains 0 as a limit point. Indeed, it contains a sequence
of trapezoids converging to 0.
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