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Abstract

Over the past twenty years, wavelets have gained popularity as bases
for transforms used in image and signal processing. We begin by showing
how wavelets arise naturally in this context. Classical construction tech-
niques using Fourier analysis are then presented. The paper concludes
with recent extensions of these techniques employing the tools of abstract
harmonic analysis and spectral multiplicity theory.

1 Introduction

Wavelets arise naturally in efforts to store images efficiently. To capture a black
and white image on a 1600 by 1200 pixel computer screen we might first try
storing a gray scale number between 0 and 255 for each of the 1,920,000 pixels.
However, pixel by pixel storage is not very efficient, because it does not take
advantage of regions in which the darkness does not change. For example, there
are clearly more efficient ways to store an image of a black rectangle covering
half of the screen, than to keep 960,000 copies of the number 0 and 960,000
copies of the number 255. Even a photograph of a face usually has large regions
of constant darkness.
To overcome the inefficiency of pixel by pixel storage, we would like to use

different levels of resolution in different regions of the image. In areas where
darkness is highly variable, we need a higher level of resolution than in areas
where it stays constant. As a first step toward this goal, we capture the whole
image at different levels of resolution as follows: First we record the average
gray scale on the whole image, which for convenience we think of as occupying
the unit square. (For more general images, we can think of averaging over each
of the 1× 1 squares whose vertices are lattice points.) We call this the 0th level
of resolution. Then we record the average on each 1

2 × 1
2 subsquare, which we

call the 1st level of resolution. We can proceed to the resolution of single pixels
by successively averaging our image and recording that average on each of the
1
2j × 1

2j subsquares (called the j
th level of resolution), for larger and larger j.

This process yields a sequence of approximations to our image. We will have
captured our image completely accurately at the jth level if it was of constant
darkness on all of the subsquares of a 1

2j × 1
2j grid.
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Mathematically, we can describe this process in terms of a sequence of closed
subspaces of L2(R2) given by Vj = functions constant on 1

2j × 1
2j squares. Our

approximation at the jth level of resolution is simply the closest L2 approxima-
tion to our image in the subspace Vj . If we allow ourselves to both zoom in and
zoom out arbitrarily far, i.e. to consider −∞ < j <∞, we will have a structure
of the following type, first defined by S. Mallat [13]:

Definition 1 A Multiresolution Analysis (MRA) in L2(Rn) is a collection of
closed subspaces Vj that have the following properties:

1. Vj ⊂ Vj+1
2. Vj+1 = {δ(f) ≡ 2f(2x)}f∈Vj
3. ∪Vj is dense in L2(Rn) and ∩Vj = {0}
4. V0 has a scaling function φ whose translates form an orthonormal basis
for V0

Property 2 explicitly defines a dilation operator on L2(Rn) that takes us
between different levels of resolution. The normalization factor of 2 makes this
dilation a unitary operator. The first three properties together describe how
the different levels of resolution are related in a way that reflects the successive
capturing of our image. The final property describes how we can use a second
unitary operator of translation to move around at the 0th level (and thus at
any fixed level if we conjugate by dilation). In our image example, φ is the
characteristic function of the unit square.
By using an MRA, we have achieved our preliminary goal of capturing our

image at different levels of resolution. However, we have not yet gained efficiency
over pixel by pixel storage unless our image is, like the rectangle, an element
of one of the Vj spaces. Indeed, if we continue our process down to the level
of pixel by pixel resolution, we will have all the inefficiency we started with,
together with information from all the previous levels of resolution as well. The
problem is that we are starting over at each level, so that there is redundancy
in the information stored at successive levels. To see an explicit example of this,
notice that in going from the 0th level to the 1st, we already know the overall
average gray scale value, and thus would only need to record the averages on
three of the four subsquares to have total information about all four subsquare
averages.
To overcome the redundancy, instead of storing all of the V1 information in

addition to V0’s, we write V1 = V0 ⊕W0 and seek an orthonormal basis for W0.
In our example, we let q1, q2, q3, and q4 be the upper left, upper right, lower
left, and lower right quadrants of the unit square respectively, and let

ψ1 = χq1∪q2 − χq3∪q4 ,

ψ2 = χq1∪q3 − χq2∪q4
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and
ψ3 = χq1∪q4 − χq2∪q3 ,

where χA denotes the characteristic function of the set A. Then the translates
of ψ1, ψ2, ψ3 and φ form an orthornormal basis for V1. In fact, positive and
negative dilates of translates of just ψ1, ψ2 and ψ3 form an orthonormal basis
for L2(R2). Storing the coefficients of our image in terms of its coefficients for
the orthonormal basis given by the dilates and translates of the ψ’s does finally
achieve the image compression we were seeking. At each level, the new infor-
mation given by the coefficients of the further dilated ψ’s can be thought of as
correction terms to update the information from the previous level of resolu-
tion. In regions of the image where darkness does not change, these coefficients
will all eventually be 0. Thus we achieve lossless compression from the sav-
ings of storing sequences containing lots of zeroes. We can accomplish further
compression with the least loss of accuracy in the image by throwing away the
coefficients that are smallest in absolute value. Since our dilation operator nor-
malizes at each step, the coefficients will give an accurate measure of the relative
importance of the correction terms.
The ψ’s are called a wavelet. In general we have:

Definition 2 {ψk}k=1..r ⊂ L2(Rn) is an orthonormal wavelet for dilation by
an integral expansive matrix D if {ψj,k,l ≡

0|detD|jψk(Djx − l)}j,l∈Z;k=1..r
form an orthonormal basis for L2(Rn).

We began our description of wavelets in L2(R2) in order to show their rela-
tionship to the problem of image compression, but the simplest place to study
wavelets is in 1-dimension. Three well-known and simple examples of wavelets
for dilation by 2 in L2(R) are the Haar wavelet [11],

ψ = χ[0, 12 ) − χ[ 12 ,1),
the Shannon wavelet, for which�ψ = χ[−1,− 1

2 )∪[ 12 ,1)

and the Journé wavelet [13], with�ψ = χ[− 16
7 ,−2)∪[− 1

2 ,− 2
7 )∪[ 27 , 12 ]∪[2, 167 ).

We can think of the 2-dimensional example we developed above as being
built out of tensor products of the 1-dimensional Haar wavelet. The other two
1-dimensional examples given here are described in terms of their Fourier trans-
form �ψ. They are interesting as wavelets because of the simplicity of these
transforms. In particular, the Shannon wavelet is so-named because of its re-
lationship to the Shannon sampling formula [15]. Note that on the Fourier
transform side, translation becomes multiplication by exponentials. We will see
in the next section that this fact makes the Fourier transform very useful in the
study of wavelets.

Two basic questions arise in looking at the examples given above:
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1. How do we find new wavelets with desirable properties? The examples
of wavelets we have described so far all have their drawbacks. The Haar
wavelet in either dimension 1 or 2 is discontinuous, and thus is not the
best basis to use to capture smooth images. The Shannon and Journé
wavelets have Fourier transforms that are discontinuous, and thus are not
well localized. Can we find a smooth wavelet for dilation by 2 in L2(R)
that still has compact support? Another natural question about finding
new wavelets concerns the number of ψk’s required. The fact that our
examples so far consist of single wavelets (r = 1 in Definition 2) in 1
dimension, but a 3-wavelet in 2 dimensions also raises the question of
whether we can find a 1-wavelet or 2-wavelet for dilation by 2 in L2(R2).

2. How strong is the connection between wavelets and MRA’s? Although we
motivated the definition of wavelet using the idea of an MRA, it turns
out that some wavelets (for example, the Journé wavelet above) have no
associated MRA’s.

The first question is easiest to answer if we assume we have an MRA for dilation
by 2 in L2(R). This is the setting in which Meyer [14] and Daubechies [10] carried
out their famous construction of wavelets using filters. We describe that work
in Section 2 below. Their answer can then be generalized to situations where
no MRA is possible. This leads to the work of Baggett, Courter, Jorgensen,
Medina, Packer and Merrill, which is described in Section 3.

2 Building MRA wavelets from filters in L2(R)
Suppose we have a single wavelet ψ for dilation by 2 in L2(R), with an associated
MRA, and so a scaling function φ whose translates form an orthonormal basis
for V0.
Because �V0 ⊂ �V1, and /W0 ⊂ �V1, we can write �φ ∈ �V0 and �ψ ∈ /W0 in terms of

exponentials times the dilate of �φ. That is, there must exist periodic functions
(with period 1) h and g such that

�φ(x) = 1√
2
h(
x

2
)�φ(x

2
) (1)

and �ψ(x) = 1√
2
g(
x

2
)�φ(x

2
). (2)

EXAMPLES: For the Shannon wavelet, where �ψ = χ[−1,− 1
2 )∪[ 12 ,1) and

�φ =
χ[− 1

2 ,
1
2 )
, we have

h =
√
2χ[− 1

4 ,
1
4 )
and g =

√
2χ[− 1

2 ,− 1
4 )∪[ 14 , 12 ).

For the Haar wavelet, where φ = χ[0,1) and ψ = χ[0, 12 ) − χ[ 12 ,1), we have

h =
1√
2
(1 + e2πix) and g =

1√
2
(e2πix − 1).
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The functions h and g are called low and high pass filters. Notice that
in the Shannon example in particular, h and g do indeed act by filtering out
all but low (for h) or high (for g) frequencies. Because of the orthonormality
conditions satisfied by translates of φ and ψ, all filters defined by (1) and (2)
must satisfy orthonormality-like conditions:

|h(x)|2 + |h(x+ 1
2
)|2 = 2 (3)

|g(x)|2 + |g(x+ 1
2
)|2 = 2 (4)

and

h(x)g(x) + h(x+
1

2
)g(x+

1

2
) = 0. (5)

The reason filters are useful is that we can reverse this process of finding
filters from wavelets. First note that we can easily build a high pass filter to go
with any low pass filter. Indeed, if h is any periodic function that satisfies (3),
we can take

g(x) = e2πixh(x+
1

2
),

and the other two orthonormality conditions (4) and (5) will be satisfied as well.
(Other choices for g are possible.) Given h and g, under appropriate conditions,

we can then build �φ by iterating equation (1). The appropriate conditions are
exactly those that are needed to make the resulting infinite product converge.

Theorem 1 Let h and g be C1 functions that satisfy the orthonormality condi-
tions (3), (4), and (5). Suppose, in addition, that h is nonvanishing on [− 14 , 14),
and |h(0)| = √2. Then:

�φ(x) = ∞�
j=1

1√
2
h(2−jx)

is a scaling function for an MRA, and

�ψ(x) = 1√
2
g(
x

2
)�φ(x

2
).

is an orthonormal wavelet.

This technique was developed by Mallat [13] and Meyer [14], and used by
Daubechies [10] to build Cr wavelets with compact support. (It can be shown
that there are no C∞ wavelets with compact support.) Daubechies’ construc-
tion uses powers of the trigonometric identity sin2(x) + cos2(x) = 1, which fits
naturally into equation 3 to find the lowpass filter h. A good introductory
description of these constructions appears in [16].
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The theorem’s requirements that h satisfy |h(0)| = √2 and h be in C1
are natural restrictions in order to make the infinite product converge. The
condition that h is nonvanishing on [−14 , 14 ] appears less natural; it is used
in the proof to ensure L2 convergence of the infinite product and thus the
orthonormality of the translates of φ. A famous example due to A. Cohen
[6] showed that removing the condition h nonvanishing on [−14 , 14) can in fact
lead to functions φ and ψ whose translates are not orthonormal. Cohen took

h = 1+e−6πix√
2

, which resulted in a stretched out version of the Haar scaling

function and wavelet, φ = 1
3χ[0,3) and ψ =

1
3(χ[− 1

2 ,1)
− χ[1, 52 )).

However, the classical Theorem 1 can be extended to accommodate this and
similar examples if we generalize our definition of wavelet.

Definition 3 {ψj,k,l} is a normalized tight frame for L2(Rn) if for each f ∈ L2
we have ,f,2 =�j,k,l |�f |ψj,k,lX|2.
{ψk} ⊂ L2(Rn) is a frame wavelet for dilation by an integral expansive

matrix D if {ψj,k,l ≡
0|detD|jψk(Djx− l)} form a normalized tight frame for

L2(Rn).

Note that a normalized tight frame can exhibit redundancy, and therefore
need not be a basis. Indeed, it can include 0 as one of its elements. However, a
normalized tight frame {fj} does have the property that every f ∈ L2 can be
recaptured from its coefficients, f =

��f, fjXfj . It turns out that a normalized
tight frame of unit vectors must be an orthonormal basis. (See, e.g. [?]).
By broadening our definition of wavelet to include frame wavelets, we get

the following generalization of Theorem 1, which appears in [5] and was proven
independently in [12] for d = 2:

Theorem 2 Suppose h, g1, · · · gd−1 are periodic Lipschitz continuous function
in L2(R), which satisfy |h(0)| = √d and the filter equations
1.
�d−1
l=0 |h(x+ l

d )|2 = d

2.
�d−1
l=0 h(x+

l
d )gi(x+

l
d ) = 0

3.
�d−1
l=0 gi(x+

l
d )gj(x+

l
d ) = dδi,j

then the construction �φ(x) =�∞j=1 1√
d
h(d−jx) produces an L2 function φ (whose

translates are not necessarily orthogonal), and the d − 1 functions /ψk(x) =
1√
d
gk(

x
d )
�φ(xd ) form a frame wavelet for dilation by d in L2(R).

This extension starts with a filter from an MRA orthonormal wavelet and
produces a frame wavelet that need not be associated with an MRA. Thus it
suggests that we look again at the connection between wavelets and MRA’s,
and consider the possibility of more general filters.
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3 Generalized Multi-resolution Analyses and Gen-
eralized Filters

As mentioned in the introduction, even orthonormal wavelets need not be as-
sociated with an MRA. The reason for this lies in the MRA requirement of the
existence of a scaling function. Given an orthonormal wavelet {ψk} ⊂ L2(Rn),
if we let Vj = the closed linear span of {ψi,k,l}i<j , then the subspaces {Vj} do
determine a generalized MRA, according to the definition below:

Definition 4 A Generalized Multiresolution Analysis (GMRA) is a collection
of closed subspaces {Vj}j∈Z of L2(Rn) such that:
1. Vj ⊂ Vj+1
2. Vj+1 = {δD(f) ≡

0|detD|f(Dx)}f∈Vj
3. ∪Vj dense in L2(Rn) and ∩Vj = {0}
4. V0 is invariant under translation.

The definitions of MRA and GMRA differ only in condition (4): An MRA
requires that V0 has a scaling function φ such that translates of φ form an
orthonormal basis for V0, while a GMRA requires only that V0 be invariant
under translation by the integer lattice. In spite of this difference, it is shown
in [3] that a GMRA has almost as much structure as an MRA. Translation is
a unitary representation of Zn on V0, and thus is completely determined by
a multiplicity function m : [−12 , 12)n )→ {0, 1, 2, · · · ,∞} describing how many
times each character occurs as a subrepresentation. A GMRA is an MRA iff
m ≡ 1. Journé’s famous non-MRA wavelet example for dilation by 2 in L2(R)
has

m(x) =

⎧⎨⎩ 2 x ∈ [−17 , 17)
1 x ∈ ±[17 , 27) ∪±[37 , 12)
0 otherwise

In any GMRA, we write V1 = V0 ⊕W0, just as we did in the MRA case.
Representation theory can then be used (see [3]) to show that the GMRA has an
associated orthonormal wavelet if and only if the multiplicity function satisfies
a consistency equation:

m(x) + (number of wavelets) =
3

m(preimages of x under Dt).

Takingm ≡ 1, this consistency equation determines that the number of wavelets
must be 3 for an MRA wavelet for dilation by 2 in L2(R2), so 1-wavelets cannot
be found there using the MRA filter technique. However, examples of non-
MRA, GMRA orthonormal wavelets whose Fourier transforms are characteristic
functions can be built directly from the consistency equation. We have used this
technique (in [3]and [1]) to make 1-wavelets and a 2-wavelet in L2(R2), and a
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4-wavelet in L2(R3). (By the consistency equation, MRA wavelets require 7-
wavelets in L2(R3).) Other examples of non-MRA 1-wavelets in L2(R2) appear
in, e.g. [9] and [4].
In every GMRA, there is a unitary equivalence between translation on V0 and

multiplication by exponentials on ⊕L2(Sj), where Sj = {x : m(x) ≥ j}. This
unitary equivalence plays a role here similar to that of the Fourier transform
in the classical MRA case. It ensures that in a GMRA we can find generalized
scaling functions, φ1,φ2, · · · such that {φi(x− l)} form a normalized tight frame
for V0. It also enables us to develop a generalized notion of low and high pass
filters.
Just as in the classical case, we begin by building filters from wavelets, then

see if we can reverse the process. Suppose we have a non-MRA orthonormal
k-wavelet ψ1, · · · ,ψk for dilation by D in L2(Rn). We then have generalized
scaling functions φ1, · · · ,φc. Since V0 ⊂ V1 and W0 ⊂ V1, we can show ([1])
there exist periodic functions hi,j and gl,j , supported on the periodization of
Sj , such that

�φi(x) = 10|detD|
c3
j=1

hi,j((D
t)−1x)/φj((Dt)−1x) (6)

and

�ψl(x) = 10|detD|
c3
j=1

gl,j((D
t)−1x)/φj((Dt)−1x). (7)

These generalized filters gi,j and hi,j satisfy orthonormality-like conditions that
are generalizations of the classical conditions (3),(4) and (5):

c3
j=1

| detD|−13
l=0

hi,j(xl)hk,j(xl) = (detD)δi,kχSi(x), (8)

c3
j=1

| detD|−13
l=0

gi,j(xl)gk,j(xl) = (detD)δi,k, (9)

and

c3
j=1

| detD|−13
l=0

hi,j(xl)gk,j(xl) = 0, (10)

where the xl are the preimages of x under D
t mod 1.

In the case of the Journé wavelet, equations (6) and 7 simplify to:

/φ1(x) = 1√
2

p
h1,1((

x

2
)/φ1(x

2
) + h1,2((

x

2
)/φ2(x

2
)
Q
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/φ2(x) = 1√
2

p
h2,1((

x

2
)/φ1(x

2
) + h2,2((

x

2
)/φ2(x

2
)
Q
,

and �ψ(x) = 1√
2

p
g1((

x

2
)/φ1(x

2
) + g2((

x

2
)/φ2(x

2
)
Q
,

which look very similar to the equations (1) and (2) that define classical low
and high pass filters. We can use these to find the Journé generalized filters
from the wavelet �ψ = χ[− 16

7 ,−2)∪[− 1
2 ,− 2

7 )∪[ 27 , 12 ]∪[2, 167 ),

and generalized scaling functions/φ1(x) = χ[− 4
7 ,− 1

2 )∪[− 2
7 ,

2
7 )∪[ 12 , 47 ),

/φ2(x) = χ[− 8
7 ,−1)∪[1, 87 ).

We obtain (see [7])

h1,1 =
√
2χ[− 2

7 ,− 1
4 )∪(− 1

7 ,
1
7 )∪[ 14 , 27 ) , h1,2 = 0,

h2,1 =
√
2χ[− 4

7 ,− 1
2 )∪[ 12 , 47 ) , h2,2 = 0

g1 =
√
2χ[− 1

4 ,− 1
7 )∪[ 17 , 14 ) , and g2 =

√
2χ[− 1

7 ,
1
7 )
.

To use generalized filters to build wavelets, we now wish to reverse this
procedure, just as we did in the classical case. In order to first build filters, we
use functions on the disjoint union of the Sj ’s whose values are

√
detD times

unitary matrices, with different dimensions for different values of x. We need
the values of the filters to be

√
detD times unitary matrices in order to satisfy

the generalized orthonormality conditions (8), (9), and (10). The matrices of
filter values have different dimensions depending on how many of the sets Sj
the point x and its preimages are in. Once we have the filters, we build the
generalized scaling function using an infinite product of matrices that comes
from the iteration of equation(6). The wavelet is then produced by equation(7).
Conditions that make this possible are described in the following generalization
(see [2]) of the Bratteli-Jorgensen theorem :

Theorem 3 Suppose {hi,j} and {gk,j} are periodic functions that are supported
on the periodization of Sj, Lipschitz continuous in a neighborhood of the origin,
and that satisfy the three generalized orthonormality conditions (8),(9), and
(10). Suppose in addition the hi,j satisfy the generalized lowpass conditions

hi,j = 0 for j > i and |hi,j(0)| =
0
(|detD|)δ(i,1)δ(j,1). Write H for the matrix

(hi,j). Then the components of
�∞
k=1

1√
| detD|H((D

t)−kx) converge pointwise

to Pi,j ∈ L2(Rn). If we let �φi = Pi,1, then
/ψk(x) ≡ 10|detD|3

j

gk,j((D
t)−1x)/φj((Dt)−1x)

are the Fourier transforms of a frame wavelet on L2(Rn).
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The proof, like that of [5], proceeds by using matrices of values of the filters to
define partial isometries that satisfy relations similar to those defining a Cuntz
algebra [8].
Using this procedure, we have built wavelets with interesting properties, for

example, a non-MRA orthonormal wavelet on L2(R) whose Fourier transform
is C∞ on an arbitrarily large interval (see [1]), and a non-MRA frame wavelet
on L2(R) whose Fourier transform is C∞ on all of R (see [2]). These examples
are somewhat surprising since it is known that compactly supported wavelets
on R must be MRA wavelets.
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