F & F Problem: The Fundamental Group

In class on Friday we defined an equivalence relation on the set of paths $\alpha : [0, 1] \to X$ where (X, \mathcal{T}) is a topological space and $\alpha(0) = x_0 \in X$ and $\alpha(1) = x_1 \in X$ are fixed. In particular, $\alpha_{x_0, x_1} \beta$ if there exists a continuous function $F(s, t) : [0, 1] \times [0, 1] \to X$ (homotopy) such that $F(s, 0) = \alpha(s)$, $F(s, 1) = \beta(s)$, $F(0, t) = x_0$, and $F(1, t) = x_1$. We say that F deforms α to β fixing endpoints. We focus on the set of equivalence classes (homotopy classes) of paths joining x_0 to x_1 .

If α and β are paths joining x_0 to x_1 and x_1 to x_2 , then we defined a multiplication $\gamma = \alpha \cdot \beta$ where γ is a path joining x_0 and x_2 . Moreover, we showed that this multiplication is well-defined with respect to equivalence classes. We also talked about inverses and an identity element. Your job is to put these together into a derivation of what is called the fundamental group of a topological space.

Definition 1. Let (X, \mathcal{T}) be a topological space and $* \in X$. We define the "fundamental group of X based at *" which is denoted $\pi_1(X, *)$. The elements of the group are equivalence classes of paths $\alpha : [0, 1] \to X$ where $\alpha(0) = \alpha(1) = *$. These paths often are called "loops" for obvious reasons. The multiplication of two elements $\alpha \cdot \beta$ is as given above except with $x_0 = x_1 = *$.

Prove that $\pi_1(X, *)$ is a group under the operation $\alpha \cdot \beta$. Remember that the definition of a group requires proof that this operation is associative, that each element has an inverse, and that there is an identity element.