Personal Background

• MS in Statistics; PhD in Mathematics

• 30 years teaching at liberal arts college
 – Service course: Intro
 – Math major courses (statistics track)
 • Linear models; math statistics

• 30 years assisting others inside and outside (mostly legal) of the academy
Colorado College Block Plan

• All intensive study: Course \Leftrightarrow 3.5 Weeks
• Fall and spring semesters: 4 blocks each
• Winter half block
• Students take and faculty teach one block at a time
• **Pedagogical note for upper division courses in math**: student ‘projects’ (broadly defined) are nearly essential.
Backdrop

- **Math Probability → Math Statistics** satisfies the longitudinal sequence requirement for the math major at CC. As such, it enjoys a central role, especially for those following the statistics track.
- **Applied Statistics Degree Programs:** Students view Math Stats as a ‘nasty hurdle’.
- **Trends in Teaching Statistics:** Remove all mathematics including probability from lower- and mid-level courses. *Remove mathematicians from the statistics classroom.*
 (Being somewhat of a hybrid, I have refused to leave!)
Natural Question: What does this debate have to say about the content and role of mathematical statistics in the statistics track of the mathematics major at a liberal arts college?
Traditional Role at CC

• **Wishful thinking**: unifying framework
• Prepare students for graduate school/work in statistics
• Application of Probability
• Need for mathematical machinery
• ‘Culminating experience’ for majors
 – Calc, linear alg, comb, prob, complex
Role of Statistical Computing

• Traditional
 – Data Analysis
 – Monte Carlo, Bootstrap, …

• More recent
 – Spreadsheets

• Modern Mathematical †
 – Symbolic parametric analysis
 – Density and distribution functions
 – Order statistics: min, median, max, etc
 – Moment generating and characteristic functions
Mathematical Computing

• Derive, Maple, Matlab, Mathematica, etc
 – Helpful to learning and teaching?
 – Applications to data analysis?†

• Software written in these
 – $$$ (e.g., Mathstatica)
 – Usual plethora on web
Examples

1. Modeling spread of forest fires
 – Student independent study project (advanced)
2. The binomial distribution and mutations
 – Student project for introductory course
1. Modeling Forest Fires

Uniformly distributed trees
Distribution of Distances Between Trees

\[X_j - X_i \]

\[Y_j - Y_i \]

\[Z_{i,j} \]
Distributions of $Z_{i,j}$

- X_i's and Y_i's are independent (uniform)
- Dist of $Z_{i,j} = ((X_i-X_j)^2 + (Y_i-Y_j)^2)^{1/2}$ can be computed by distribution function technique
- These data are one component of a model for the spread of forest fires
- Compute distribution of $Z_{i,j}$ from those of X and Y
Technique of Distribution Functions

\[
\frac{d}{dz} \int_{0}^{z} \int_{0}^{\sqrt{z^2 - t^2}} f(s) \cdot g(t) \, ds \, dt
\]
2. Everything is Binomial!

• Each measurement falls into one and only one category (2 categories)

• Sequence of n such measurements

• \(X = \) number of measurements within the preferred category.

• All is well if the observations are independent and each observation has the same chance falling into a preferred category.
Intro to Stat Project

• Goal: Compare panel of CC students to a panel of experts rating motion pictures

• Questionnaire: Adapted actual questions to a multiple choice format
 – 17 questions about films
 • 16 had four choices for answers
 • 1 had three choices
 – Students: treat each questionnaire as a binomial with success a ‘match’
Two Mutations of the Binomial

1. Probability of a success (match) changes
 - Number of choices changes

2. Trials may be correlated
 - Same student answers questions in the same order.
Mutation 1: Sum of Two Binomials

- \(X = Y + Z \)
 1. \(Y \sim \text{Binomial}(r,p) \)
 2. \(Z \sim \text{Binomial}(s,q) \)
 3. \(n = r + s \) is the sample size

- Generalization: Can have a sum of up to \(n \) distinct binomial random variables
Independence
(a priori equals conditional)

• X and Y with densities are *independent* random variables if \(f(x,y) = f_X(x)f_Y(y) \).
 – \(f(x,y) \) is the *joint* density with domain \(\mathbb{R}^2 \).
 – Probability is represented by volume.

• If \(X_1 \) and \(X_2 \) have the same density, then we say they are *identically distributed*.

• \(X_1, \ldots, X_n \) is a *random sample* if they are independent (joint density factors into \(n \) factors) and identically distributed.
Moment Generating Functions

• Moments

\[\mu_r = E(X^r) = r^{th} \text{ moment about 0.} \]
\[\mu_r' = E(X - \mu)^r = r^{th} \text{ moment about } \mu. \]
\[\mu_1 = E(X); \mu_2' = E(X - \mu)^2 = \text{Var}(X) \]

• Moment generating function (introduced in part to ‘prove’ the Central Limit Theorem)

\[M_X(t) = E(e^{tX}) = \int e^{tx}f(x)dx \text{ (continuous)} \]
\[M_X(t) = E(e^{tX}) = \sum e^{tx}f(x)dx \text{ (discrete)} \]
\[M_X^{(r)}(0) = ? \]
Moment Generating Functions of Linear Combinations

- $M_{X+Y}(t) = \mathbb{E}(e^{t(X+Y)}) = \mathbb{E}(e^{tX}e^{tY})$
- So, $M_{X+Y}(t) = \int e^{tX}e^{tY}f(x,y)\,dx\,dy$

 $= \int e^{tX}e^{tY}f(x)f(y)\,dx\,dy$ by independence

 $= (\int e^{tX}f(x)\,dx)(\int e^{tY}f(y)\,dy) = M_X(t)\,M_Y(t)$
- Thus, if X_1, \ldots, X_n are iid, then

 $M_{\sum X_i}(t) = (M_X(t))^n$
- $M_{cX}(t) = \mathbb{E}(e^{t(cX)}) = \mathbb{E}(e^{(ct)X}) = M_X(ct)$
Binomial(n,p) ~ X

- Bernoulli trial: \(X = 0 \) or 1
- \(n \) independent trials
- \(P(X_i = 1) = p \); \(P(X_i = 0) = 1-p \)
- \(X = \sum X_i = \# \) of 1’s
- \(M_{X_i}(t) = (1-p) \cdot e^{t \cdot 0} + p \cdot e^{t \cdot 1} \)
- \(M_X(t) = ((1-p) + p \cdot e^{t \cdot 1})^n \)
Characteristic Function

• Problem: Most rv’s do not have a MGF.
 – Difficulty: e^{tx} must be integrated from $-\infty$ to ∞ with respect to x.

• Question: Can the density be recovered from the MGF?

• Solution: $\chi_X(t) = E(e^{itx}) = M_X(i \cdot t)$ (complex Fourier transform)
 $$(F(b) - F(a)) = \lim_{n \to \infty} \sum_{-n}^{n} \frac{-i \cdot a \cdot s - i \cdot b \cdot s}{e^{i \cdot s} - e^{i \cdot s}} \cdot \chi ds$$
Mixture of Binomials

- $Y \sim \text{Binomial}(m, p)$; $Z \sim \text{Binomial}(n, q)$
- Y and Z independent
- What is the distribution of $Y + Z$?
- What is the Characteristic function for $Y + Z$?

\[
i.t^m \cdot i.t^n \cdot (p \cdot e^{i.t} + 1 - p) \cdot (q \cdot e^{i.t} + 1 - q)
\]
Distribution of $Y + Z$

- Invert the characteristic function
- $\text{RE}(\)$ is necessary because of underflow
\[
m = 5, \ p=0.5; \ n = 3, \ q = .7
\]

\[
\text{RE}\left\{\begin{array}{c}
- i \cdot (-0.9) s - i \cdot b \cdot s \\
e^{-e} \cdot i \cdot s \cdot 5 \cdot i \cdot s \cdot 3 \\
- n \cdot i \cdot s \\
\end{array}\right\} \cdot (0.5 \cdot e + 1 - 0.5) \cdot (0.7 \cdot e + 1 - 0.7) \ ds
\]

\[
2 \cdot \pi
\]
c = 50
$c = 50$ and $c = 100$
c = 50, c= 100, c=400
Mutation 2: Correlated Trials

• Linear algebra
• Binomial probabilities
• Simplest discrete random vectors
• Covariance and correlation
• Basic ideas of time series
Conclusions

• Mathematical statistics is alive and well
 – Inferred in part from this conference

• Mathematical computing packages are surprisingly useful pedagogical tools for undergraduates

• Mathematical computing packages are of some use in data analysis