MATHEMATICAL COMPUTING IN STATISTICS

FRED TINSLEY (WITH STEVEN JANKE) JANUARY 18, 2008 2:40 PM

Personal Background

- MS in Statistics; PhD in Mathematics
- 30 years teaching at liberal arts college
 - Service course: Intro
 - Math major courses (statistics track)
 - Linear models; math statistics
- 30 years assisting others inside and outside (mostly legal) of the academy

Colorado College Block Plan

- All intensive study: Course \Leftrightarrow 3.5 Weeks
- Fall and spring semesters: 4 blocks each
- Winter half block
- Students take and faculty teach one block at a time
- Pedagogical note for upper division courses in math: student 'projects' (broadly defined) are nearly essential.

Backdrop

- Math Probability → Math Statistics satisfies the longitudinal sequence requirement for the math major at CC. As such, it enjoys a central role, especially for those following the statistics track.
- Applied Statistics Degree Programs: Students view Math Stats as a 'nasty hurdle'.
- Trends in Teaching Statistics: Remove all mathematics including probability from lower- and mid-level courses. *Remove mathematicians from the statistics classroom.*

(Being somewhat of a hybrid, I have refused to leave!)

Natural Question: What does this debate have to say about the content and role of mathematical statistics in the statistics track of the mathematics major at a liberal arts college?

Traditional Role at CC

- Wishful thinking: unifying framework
- Prepare students for graduate school/work in statistics
- Application of Probability
- Need for mathematical machinery
- 'Culminating experience' for majors – Calc, linear alg, comb, prob, complex

Role of Statistical Computing

- Traditional
 - Data Analysis
 - Monte Carlo, Bootstrap, ...
- More recent
 - Spreadsheets
- Modern Mathematical 🕆
 - Symbolic parametric analysis
 - Density and distribution functions
 - Order statistics: min, median, max, etc
 - Moment generating and characteristic functions

Mathematical Computing

- Derive, Maple, Matlab, Mathematica, etc
 - Helpful to learning and teaching?
 - Applications to data analysis?[‡]
- Software written in these
 - \$\$\$ (e.g., Mathstatica)
 - Usual plethora on web

Examples

- 1. Modeling spread of forest fires
 - Student independent study project (advanced)
- 2. The binomial distribution and mutations
 - Student project for introductory course

1. Modeling Forest Fires

Uniformly distributed trees

Distribution of Distances Between Trees

Distributions of $Z_{i,j}$

- X_i 's and Y_i 's are independent (uniform)
- Dist of $Z_{i,j} = ((X_i X_j)^2 + (Y_i Y_j)^2)^{\frac{1}{2}}$ can be computed by distribution function technique
- These data are one component of a model for the spread of forest fires
- Compute distribution of $\boldsymbol{Z}_{i,j}$ from those of \boldsymbol{X} and \boldsymbol{Y}

Technique of Distribution Functions

2. Everything is Binomial!

- Each measurement falls into one and only one category (2 categories)
- Sequence of n such measurements
- X = number of measurements within the preferred category.
- All is well if the observations are independent and each observation has the same chance falling into a preferred category

Intro to Stat Project

- Goal: Compare panel of CC students to a panel of experts rating motion pictures
- Questionnaire: Adapted actual questions to a multiple choice format
 - 17 questions about films
 - 16 had four choices for answers
 - 1 had three choices
 - Students: treat each questionnaire as a binomial with success a 'match'

Two Mutations of the Binomial

- 1. Probability of a success (match) changes
 - Number of choices changes
- 2. Trials may be correlated
 - Same student answers questions in the same order.

Mutation 1: Sum of Two Binomials

- X = Y + Z
 - 1. $Y \sim \text{Binomial}(r,p)$
 - 2. $Z \sim \text{Binomial}(s,q)$
 - 3. n = r + s is the sample size
- Generalization: Can have a sum of up to n distinct binomial random variables

Independence (a priori equals conditional)

• X and Y with densities are *independent* random variables if $f(x,y) = f_X(x)f_Y(y)$.

- f(x,y) is the *joint* density with domain 2 .

- Probability is represented by volume.

- If X₁ and X₂ have the same density, then we say they are *identically distributed*.
- X₁, ..., X_n is a *random sample* if they are independent (joint density factors into n factors) and identically distributed.

Moment Generating Functions

• Moments

$$\begin{split} \mu_r &= E(X^r) = r^{th} \text{ moment about } 0. \\ \mu_r' &= E(X - \mu)^r = r^{th} \text{ moment about } \mu. \\ \mu_1 &= E(X); \ \mu_2' = E(X - \mu)^2 = Var(X) \end{split}$$

• Moment generating function (introduced in part to 'prove' the Central Limit Theorem $M_X(t) = E(e^{tX}) = \int e^{tX} f(x) dx$ (continuous) $M_X(t) = E(e^{tX}) = \sum e^{tX} f(x) dx$ (discrete) $M_X^{(r)}(0) = ?$

Moment Generating Functions of Linear Combinations

- $M_{X+Y}(t) = E(e^{t(X+Y)}) = E(e^{tX}e^{tY})$
- So, $M_{X+Y}(t) = \int e^{tX} e^{tY} f(x,y) dx dy$ = $\int e^{tX} e^{tY} f(x) f(y) dx dy$ by independence \circledast = $(\int e^{tX} f(x) dx) (\int e^{tY} f(y) dy) = M_X(t) M_Y(t)$
- Thus, if $X_1, ..., X_n$ are iid, then $M_{\sum Xi}(t) = (M_X(t))^n$
- $M_{cX}(t) = E(e^{t(cX)}) = E(e^{(ct)X}) = M_X(ct)$

$Binomial(n,p) \sim X$

- Bernoulli trial: X = 0 or 1
- n independent trials
- $P(X_i = 1) = p$; $P(X_i = 0) = 1-p$
- $X = \sum X_i = \# \text{ of } 1$'s
- $M_{X_i}(t) = (1-p) \cdot e^{t \cdot 0} + p \cdot e^{t \cdot 1}$
- $M_X(t) = ((1-p) + p \cdot e^{t \cdot 1})^n$

Characteristic Function

- Problem: Most rv's do not have a MGF.
 - Difficulty: e^{tx} must be integrated from $-\infty$ to ∞ with respect to x.
- Question: Can the density be recovered from the MGF?
- Solution: $\chi_X(t) = E(e^{itx}) = M_X(i \cdot t)$ (complex Fourier transform) $(F(b) - F(a)) = \prod_{\substack{RE \\ n \neq \infty}} \frac{e^{-i \cdot a \cdot s} - e^{-i \cdot b \cdot s}}{i \cdot s} \chi_{ds}$

Mixture of Binomials

- Y~Binomial(m,p); Z ~ Binomial(n,q)
- Y and Z independent
- What is the distribution of Y+Z?
- What is the Characteristic function for Y+Z?

Distribution of Y + Z

- Invert the characteristic function
- RE() is necessary because of underflow

c = 50

c = 50 and c = 100

c = 50, c= 100, c=400

Mutation 2: Correlated Trials

- Linear algebra
- Binomial probabilities
- Simplest discrete random vectors
- Covariance and correlation
- Basic ideas of time series

Conclusions

- Mathematical statistics is alive and well
 Inferred in part from this conference
- Mathematical computing packages are surprisingly useful pedagogical tools for undergraduates
- Mathematical computing packages are of some use in data analysis