
 

MODELING WATER FLOW IN A WATERSHED
Introduction

Sketch of the System

Reservoirs

Flow Processes

Model Diagram

Model Equations

Experiments

 

RETURN TO HYDROSPHERE PAGE

RETURN TO MAIN PAGE

 

 

Introduction

Anyone who lives near a river that experiences periodic floods understands the importance of
understanding the dynamics of water flow in a watershed -- the area drained by a particular
stream or river. Every year, floods are responsible for significant loss of life and property
damage despite the efforts to control flooding through the construction of dams. Floods are
regular occurrences along most rivers -- they are an important part of the natural stream cycle --
but most people consider them unnatural and seem to have little memory of the frequency of
flooding in the past. So, people continue to develop the floodplains of rivers (the floodplain is
the broad, flat plain adjacent to a river that is frequently occupied by the river during a flood).
The temptation to inhabit floodplains is quite strong; they are level, fertile tracts of land, close
to the water table in most areas and thus ideally suited for agriculture. It is unfortunately typical
that many people have had the arrogance to ignore the natural operation of this system and
instead imagine that the floods can be subdued and controlled and that the costs associated with
this task (and its failures) do not warrant a consideration of alternative ways of dealing with
flooding. This theme of trying to control and dominate the natural world runs throughout the
history of the "civilized" world, and history of full of sad stories of the consequences. But, our
purpose here is not to analyze history, but rather to analyze the behavior of this system, with the



idea in mind that a better understanding of the system can provide a better basis for dealing with
rivers.

To begin with, let's consider the form and appearance of a typical watershed, illustrated in the
figure below. Included in this figure are some of the physical characteristics of a typical
watershed, one we will create a model of and experiment with.

 

 

If we think about it from a systems standpoint, the amount of water in a river depends on the
inputs and the outputs. The inputs are water flowing over the surface water seeping in through
the bed of the stream from the soil and/or groundwater (although in arid regions, this second
inflow is actually an outflow; the stream lies above the water table and loses water to the soil
and ground water). The flow of water from soil and ground water sources constitutes the base
flow of a stream and most streams in the eastern half of the US are maintained by this ground
water and soil water contribution. Water leaves the river by flowing down the channel; this rate
is controlled by things like the gradient of the stream, the roughness of the stream bed, and the
shape of the channel. The shape of the channel is important since it determines what portion of
the flowing water is in contact with the stream bed and can thus be slowed by friction
associated with the rough surface of the stream bed.

The inputs -- runoff and ground water and soil water flow -- are themselves controlled by a
variety of physical characteristics of the watershed, the soils, the underlying aquifer, and the



weather. The processes that affect these inputs will be discussed next, as we consider ways of
defining them in our model. But first, let's go through the process of converting the information
in the above figure of a watershed into a STELLA model.
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Reservoirs
River Water

The first question to consider is what reservoirs we need to include. One reservoir can represent
the water contained in the network of stream channels that experience year-round flow in the
watershed (this is undoubtedly a small fraction of all of the channels within a watershed). As
seen in the figure above, we will assume here that this channel length is 20 km and with an
average cross-sectional area of 5 m2, we have 100,000 m3 of water residing in this reservoir --
this gives us the initial amount.

 

Ground Water

Another reservoir will represent the ground water stored in the aquifer below the water shed. In
many cases, the aquifer may extend far beneath the surface, but here, we are more concerned
with the part of that aquifer that feeds water into the stream; this is likely to have a thickness
roughly equivalent to the amount of topographic relief in the basin. To begin with, we will use
an aquifer thickness of 20 m, which, combined with a porosity (percentage of pore space by
volume -- effectively the space that could be occupied by water) of 10% and a watershed with
an area of 800 km2, gives an initial volume of 16E8 (or 16 x 108) m3 -- a lot of water.

 

Soil Water

The soil, star of our previous model, makes another appearance as a reservoir. With an average
thickness of 2 m and a porosity of 10%, this gives us a volume of 1.6E8 m3 at capacity. To
begin with, we will have the soil reservoir be half saturated, or half of its capacity; this gives an
initial volume of 8E7 m3.

 

Surface Water



Also making a return appearance in this model will be the water occurring as a thin layer at the
surface, present when the rate of precipitation exceed the rate of infiltration into the soil (also
during the winter, but we're not dealing with winter here). To begin with, this reservoir will
have a value of 0.
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Flow Processes
Precipitation

The total amount of rain fall on the surface in our watershed is equal to the rate of rainfall times
the area of the watershed. We will always assume that the rainfall is uniform, but given the size
of our watershed, it is possible that significant variations might occur in some storms. The
rainfall rates will be specified in units of cm/hour, so one hour is the basic time unit for the
whole model (a far cry from the one month time unit used in the last model). To provide some
idea of the upper range of rainfall rates we might explore, the table below gives some of the
record maximum rates.

 

MAXIMUM OBSERVED RAINFALLS
   Quantity        Time Period     Rate cm/hr
  2.0 m            24 hrs            8
  1.4 m            12 hrs           12
  1.0 m             6 hrs           16
  0.4 m             1 hr            40
  7.5 cm            1 min          450
 
   data from Barry and Chorley, 1992

 

Infiltration

When water falls on the surface, it will either runoff over the surface, or it will infiltrate into
the soil. The rate of infiltration varies on such things as the composition and structure of the soil
and how much water is already in the soil. Soils have the tendency to allow rapid infiltration
when they are undersaturated, but this rate drops off considerably when the soil is saturated. At
the point of saturation, the rate of infiltration will be at some minimum value; here that value is



set at 1 cm/hr, while the rate when the soil is empty goes up to 8 cm/hr. The value of 1 cm/hr is
typical for sandy-silty soils; a very sandy soil may have a value of 2 cm/hr and a clay-rich soil
may have a final infiltration rate of 0.1 cm/hr. As in the previous model, we will define the flow
rate or velocity (in cm/hr) as a graphical function of the soil water. This velocity is then
multiplied by the area of the watershed to give the volume of water that is allowed to infiltrate
during each time step.

We will use a graph relating the infiltration rate (cm/hr) to the amount of soil in the water, just
as we did in the soil water model (go here for a more detailed explanation).

 

Percolation

Although percolation and infiltration are very similar words, we use percolation here to refer to
the transfer of water from the soil to the deeper aquifer -- the ground water reservoir. This rate
of transfer is very low when there is little water in the soil, and rises to some maximum value,
which is set here to be equal to the infiltration rate when the soil is saturated. This means that
when the soil is saturated, the rate of infiltration will be equal to the rate of percolation.
Percolation, like infiltration, is not only a function of the amount of water in soil; it is also
dependent upon the texture (mixture of and, silt, and clay in the soil) and overall porosity.
Because of this, these two processes should not be altered independently.

As with infiltration, we will utilize a graph to define the relationship between the soil water
content and the rate (cm/hr) of percolation.

 

Discharge

Within the watershed, below the surface, water flows laterally through both the soil and the
deeper aquifer from regions of higher elevations to lower elevations, where streams are located.
This flow makes up what is called the base flow of a stream -- the flow of a stream during dry
periods of time. This flow also continue during the winter in areas where the soil freezes,
providing some evidence that the majority of this water comes from the deeper aquifer rather
than from the soil.

In our model, which is based in part on an actual watershed, the base flow is set to 7200 m3/hr,
so the sum of the discharge flows from soil and ground water is set to be 7200 m3/hr. 95% of
this flow comes from the groundwater and the remaining 5% comes from the soil. Both of these
flows are defined as typical draining processes, where the rate of flow is defined as the amount
in the reservoir times a rate constant. The rate constant itself is simply the base flow (multiplied
by 0.95 or 0.05) divided by the initial amount in the reservoir.



 

Runoff

When rain falls on the surface at a high enough rate (exceeding the infiltration rate), it
accumulates and forms a thin film of water that is then capable of flowing off over the surface.
The rate at which it runs off of the surface and joins a flowing stream is a function of a variety
of factors; the surface slope, the roughness of the surface, the thickness of water in the layer,
and the average distance is has to travel to get to a stream. The roughness of the surface varies
greatly, being high for densely vegetated surfaces like a prairie and low for a surface like a
paved parking lot. The travel distance is related to the density of the drainage network -- the
higher the density, the shorter the distance.

Here, we will define the runoff flow as another simple draining process, in which the rate
constant, called k_Runoff, reflects the combined effects of the factors mentioned above.

 

Streamflow

Streamflow is equivalent to the volumetric rate of water flow at the downstream end of our
watershed. The streamflow varies according to factors mentioned above -- the slope or gradient
of the stream, the channel shape, and the roughness of the stream bed. In our model, we define
streamflow as a draining process in which the volumetric rate is a function of how much water
is in the river channel, but this may not be strictly true. When a stream tops its banks and spills
out over the floodplain, the water is spread thinly out over a broad surface that is often
vegetated (or occupied by building). The floodplain is a high-friction surface that causes the
water to slow down. This means that once the river tops its banks, the rate constant ought to
decrease somewhat, which will have the tendency of prolonging the flood and causing a higher
flood crest.

The above processes and reservoirs are assembled into a STELLA model as shown in the figure
below.



 

The equations used in this model are given below. Note that this model does not have a steady
state to begin with. With no rainfall, the system cannot be in a steady state, and it seems odd to
have a tiny, steady background rainfall to get the model into a steady state. By setting rainfall to
zero, you can see what happens -- the groundwater reservoir declines, as does the soil reservoir,
and the river also drops, but quite slowly.
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Equations for Watershed Model

 Time Unit = 1 Hour; DT = 0.25; Euler Method of integration

RESERVOIRS

INIT Surface_Water = 0
INIT River = 1e5 {m^3 water -- starting volume of water in the river within the drainage basin}
INIT Soil_Water = 0.5*Soil_Capacity {m^3 of water -- reservoir is 50% full to begin with}
INIT Ground_Water = aquifer_porosity*aquifer_thickness*basin_area

 
 
FLOWS

Precipitation = basin_area*(Rain*.01) {gives units of m^3/hr }



Runoff = Surface_Water*k_Runoff {units of m^3 of water}
Stream_Flow = River*(base_flow/INIT(River)) {m^3 water}
Infiltration = basin_area*(F_Infiltration*.01) {gives units of m^3}
Percolation = basin_area*(Percolation*.01)
Discharge1 = base_flow*.05*(Soil_Water/INIT(Soil_Water)) {m^3 water-- soil water
contributes 5% of baseflow}
Discharge2 = base_flow*.95*(Ground_Water/INIT(Ground_Water)) {m^3 water -- ground
water contributes 95% of baseflow}

 
 
CONVERTERS

base_flow = 7200 {m^3/hr base flow of stream}
basin_area = 8e8 {basin area in m^2}
soil porosity = 0.1 {pore space by volume -- 10%}
Soil_Capacity = basin_area*soil_thickness*porosity
soil_thickness = 2.0 {m}
aquifer_porosity = 0.1 {10% porsity}
aquifer_thickness = 20 {m}
k_Runoff = 0.4 {this is a complex function of surface roughness, slope, and drainage network}
Surf_depth = Surface_Water/basin_area {water depth in meters}

 
GRAPHICAL CONVERTERS

F_Infiltration = GRAPH(Soil_Water/Soil_Capacity)
(0.00, 5.00), (0.0833, 4.90), (0.167, 4.80), (0.25, 4.60), (0.333, 4.35), (0.417, 4.10), (0.5, 3.80),
(0.583, 3.45), (0.667, 3.05), (0.75, 2.65), (0.833, 2.05), (0.917, 1.25), (1.00, 0.00)
 
F_Percolation = GRAPH(Soil_Water/Soil_Capacity)
(0.00, 0.00), (0.1, 0.00), (0.2, 0.0015), (0.3, 0.003), (0.4, 0.0065), (0.5, 0.01), (0.6, 0.02), (0.7,
0.0315), (0.8, 0.043), (0.9, 0.049), (1, 0.05)
 
Rain = GRAPH(time)
(10.0, 0.00), (11.0, 0.1), (12.0, 0.45), (13.0, 1.00), (14.0, 2.15), (15.0, 2.60), (16.0, 2.30), (17.0,
1.20), (18.0, 0.55), (19.0, 0.2), (20.0, 0.00)

Testing the Model

Since the model described in the equations above is not in a steady state, you can test to see if
you have constructed the model properly by comparing its output with the graphs shown below
for what we will call the "standard storm". Run for 72 hours with a time step of 0.25 using
Euler's method of integration and plot streamflow and rain to make sure your model results are
the same as the graph below.



 

For comparison, here is an actual hydrograph of a stream that experienced a storm.

The real example is in many ways similar to our model result, indicating that our model does a
reasonable job of simulating the general behavior of a real watershed system. Some of the key
features to note here are that the peak stream flow lags behind the peak rainfall by some period,
and the stream flow rises rapidly and then subsides more gradually, approximately following an
exponential curve.
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Experiments
1. Changing the Sizes of the Soil and Groundwater Reservoirs

Using the standard storm rainfall, set up a sensitivity analysis in which you change the thickness



of the soil layer from 1 to 2 to 3 m for a total of three runs of the model and then make a
comparative graph plotting the streamflow for each run. You may decide that in order to explain
what has happened, to test an idea, you'll need to plot and study some of the other model
parameters. Do the same thing with the groundwater reservoir, altering its size by changing its
thickness. In our model watershed, a greater thickness of the aquifer effectively corresponds to
greater topographic relief in the watershed, which would also effect the rates of flow within the
groundwater, but we will leave that effect out at this stage. Summarize the effects of these
changes and comment on whether or not you have changed the response time of the system.

2. Changing Vegetation of the Watershed Surface

Alter the k_Runoff parameter to simulate the effect of varying amounts of vegetative cover. For
this experiment set up a sensitivity run, with an ad hoc distribution of k_Runoff varying from
0.01 to 0.1 to 1.0 for a total of three runs and plot in a comparative graph the stream flow that
results from the standard rain storm specified above. A dense vegetative cover would
correspond to a lower k_Runoff value, and a denuded surface would correspond to a higher
k_Runoff value. Note that here, we are not changing anything about the soil properties, so this
is not a simulation something like paving a watershed. Summarize the effects of these changes
and comment on whether or not you have changed the response time of the system

3. Paving the Watershed

This experiment addresses a problem that faces many urban watersheds, where increased
development means covering more of the land surface with an impermeable layer of asphalt,
concrete, or buildings. The first change to make here is in the runoff parameter -- let's change it
to 1.0 to represent a smoother, less-vegetated surface. The next change will involve the
infiltration part of the model. One way to do this is to change the F_Infiltration graph such that
the value is 2.0 on the left-hand side of the graph, and 0.0 on the right, following the same
general form of the pre-existing graph. Before running the model, predict how the model's
response will differ from the first experiment in which we only changed the k_Runoff. Study
the results and comment on the changes in the lagtime and the peak magnitude of the flood as a
consequence of making these changes.

4. Different Storms

The response of watershed systems to storms is sensitive to the nature of the storm -- whether it
is abrupt or spread out over a longer time with uniform rainfall intensities. Our standard storm
deposits about 10.5 cm of rain in the watershed, over a period of 10 hours. Let's investigate
what happens if we concentrate that same amount of rain into shorter and longer time periods.
To do this, insert the following input-output pairs of values into the Rain graphical converter:
Brief Storm -- (10.0, 0.00), (10.2, 1.00), (10.4, 3.00), (10.6, 7.50), (10.8, 9.45), (11.0, 9.90),
(11.2, 9.45), (11.4, 7.50), (11.6, 3.00), (11.8, 1.00), (12.0, 0.00). In these pairs, the first number
is the time input and the second is the rainfall output. Then, for a longer, gentler storm with still



approximately the same total rainfall, insert the following: Long Storm -- (10.0, 0.00), (13.0,
0.38), (16.0, 0.38), (19.0, 0.38), (22.0, 0.38), (25.0, 0.38), (28.0, 0.38), (31.0, 0.38), (34.0, 0.38),
(37.0, 0.38), (40.0, 0.00). Explain the very different results caused by these different rainfall
events.
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