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0. INTRODUCTION

This note included supporting material for Guilbault’s one-hour talk summarized elsewhere
in these proceedings. We supply the group theory necessary to argue that Guilbault’s tame
ends cannot be pseudo-collared. In particular, we show that certain groups (the interated
Baumslag-Solitar groups) cannot have any non-trivial perfect subgroups. The absence of
non-trivial perfect subgroups, in turn, eliminates the possibility of non-trivial homotopy
equivalences.

In contrast, we include an example of a pseudo-collared end based on groups (the interated
Adam’s groups) that are somewhat similar to the Baumslag-Solitar groups. We close with
a discussion of a homotopy theoretic approach to this construction.

I. THE GROUPS

We use the following standard notation. We let xg = g−1xg or the conjugation of x by
g, and let [s, t] = s−1t−1st or the commutator of s and t. Let S be a subset of elements
of a group N . We denote by < s1, s2, · · · ;N > the subgroup of N generated by S where
S = {s1, s2, · · · }. If N is omitted, then < s1, s2, · · · > is the free group generated by the
characters s1, s2, · · · . If S and N are as above, then we denote by ncl{s1, s2, · · · ;N} the
normal closure of S in N or the smallest normal subgroup of N containing S.

A groupN is perfect if it is equal to its commutator subgroup. Symbolically,N = [N,N ] =
N (1). Equivalently, N is equal to the transfinite intersection of its derived series.

The construction of the pseudo-collared end is based on the one-relator group, Adam’s
group:
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〉

We can repeat this patterm to obtain the iterated Adam’s groups, Ak, 1 ≤ k <∞:
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〉

For each i ≥ 1, ai is a commutator ai =
[
ai, a

ai−1
i

]
.

Guilbault constructs the tame end that is not pseudo-collared using the simplest Baumslag-
Solitar group:

B1 =
〈
b1, b0|b21 = b−1

0 b1b0
〉

=
〈
b1, b0|b21 = bb0

1

〉



Again, we can iterate to obtain the group, Bk:
〈
b0, b1, · · · , bk|b21 = bb0

1 , b
2
2 = bb1

2 , · · · , b2k = b
bk−1
k

〉

For each i ≥ 1, bi is a commutator bi =
[
bi, bi−1

]
.

II. HNN EXTENSIONS

The iterations above are each of a more general form. Given L < K and ψ : L 1:1−−→ K, we
define the HNN extension N〈
gen(K), t|rel(K), ψ(l) = t−1lt for l ∈ L

〉
The extension is split if there is a retraction

r : K → L. The following are well-known for HNN-extensions.

Facts:
1. K is a natural subgroup of N
2. N naturally retracts onto < t >∼= Z, called the free part of N . The kernel of the
retraction is ncl{{K};N}.

We also use the following well-known result about the structure of subgroups of HNN
extensions:

Theorem 1: (see [KS], Theorem 6) Let N be the HNN group above. If H is a subgroup of
N that has trivial intersection with each of the conjugates of L, then H is the free product
of a free group with the intersections of H with certain conjugates of K.

III. THE MAIN THEOREM:

First, we list some basic propositions that easily follow from the definitions:

Proposition 1: If N and H are any groups, φ : N → H is a homomorphism, and P < N
is perfect, then φ(P ) is perfect.

First, a similarity between A and B:

Proposition 2: For G = A, G = B, and each k ≥ 1, there is a surjection

γk : Gk −−−→
gk=1

Gk−1

Then, two important distinctions between A and B.

Proposition 3: The subgroup, ncl{a1;A1}, of A1 is perfect. Moreover, the subgroup,
ncl{a1, ;Ak} of Ak is perfect.

And, now the crucial negative result for Bj :

Theorem 2: For j ≥ 0, the iterated Baumslag-Solitar group Bj has no non-trivial perfect
subgroups.



Proof: We induct on j. The cases (j = 0) and (j = 1) are handled separately. For j = 0,
B0 is abelian. For j = 1, we observe that B1 is one of the well-known Baumslag-Solitar
groups for which the kernel of the map ψ1 : B1 → B0 is abelian. Then, we apply the
argument used for the case j = 2.

(j ≥ 2) Let

Bj =
〈
b0, b1, · · · , bj |b21 = b−1

0 b1b0, b
2
2 = b−1

1 b2b1, · · · , b2j = b−1
j−1bjbj−1

〉

Now, Bj now can be put in the form of the HNN group. In particular,Bj = 〈gen(K), t1|rel(K), R1〉
where

K =
〈
b1, b2, · · · , bj |b22 = b−1

1 b2b1, · · · , b2j = b−1
j−1bjbj−1

〉
,

t1 = b0, L1 = {b1;Bj}, φ1 (b1) = b21, and R1 is given by b21 = b−1
0 b1b0. The base group, K,

obviously is isomorphic to Bj−1 with that isomorphism taking bi to bi−1 for 1 ≤ i ≤ j− 1.
Define ψj : Bj → Bj−1 by adding the relation bj = 1 to the group Bj . By inspection ψj is
a surjective homomorphism. We assume that Bi contains no non-trivial perfect subgroups
for i ≤ j − 1 and prove that Bj has this same property. To this end, let P be a perfect
subgroup of Bj . Then, ψj (P ) is a perfect subgroup of Bj−1. By induction, ψj(P ) = 1.
Thus, P ⊂ ker (ψj ). By the inductive hypothesis, K has no perfect subgroups. Moreover,
b1 ∈ K still has infinite order in both K (by induction) and Bj (since K embeds in Bj).
Moreover, the HNN group, Bj , has the single associated cyclic subgroup, L =< b1;Bj >,
with conjugation relation b21 = b−1

0 b1b0. Recall that ψj : Bj → Bj−1 is defined by adding
the relation bj = 1 to Bj . Thus, ker (ψj) = ncl

{
bj ;Bj

}
.

CLAIM: No conjugate of L non-trivially intersects H = ncl
{
bj ;Bj

}

Proof of Claim: If the claim is false, then L itself must non-trivially intersect the normal
subgroup, ncl

{
bj ;Bj

}
. This means that bm1 ∈ ncl {bj ;Bj} = ker (ψj ) for some integer

m > 0. Since j ≥ 2, then ψj (bm1 ) = ψj (b1)
m = bm1 = 1 in Bj−1, ie, b1 has finite order in

Bj−1. This contradicts our observations above.

We continue with the proof of Theorem 2. Recall that P is a perfect subgroup of ker (ψj ).
It must also enjoy the property of trivial intersection with each conjugate of L. We now
apply Theorem 1 to the subgroup P to conclude that P is a free product where each
factor is either free or equal to P ∩ g−1Kg for some g ∈ Bj. Now, P projects naturally
onto each of these factors so each factor is perfect. However, non-trivial free groups are
not perfect. Moreover, by induction, K (or equivalently g−1Kg) contains no non-trivial
perfect subgroups. Thus, any subgroup, P ∩ g−1Kg, is trivial. Consequently, P must be
trivial. This completes the proof of Theorem 2.

IV. GEOMETRY AND HOMOTOPY THEORY

We begin this section by emphasizing the similarities between A and B. We let G stand
for either A or B, g stand respectively for either a or b, and w(gj) stand respectively for



either ggj−1
j or gj−1. Then,

Gk =
〈
g0, g1, · · · , gk|g2

1 = g
w(g1)
1 , g2

2 = g
w(g2)
2 ,

..., g2
k = g

w(gk)
k

〉

represents either Ak or Bk. For each i ≥ 1, gi is a commutator gi =
[
gi, w(gi)

]
. We can

summarize the relationship as follows:

SIMILARITES AND DIFFERENCES (G equals A or B)

Properties Adam’s Baum.-
Solitar

1 Relator Group
√ √

G(1) = ncl (g1;G)
√ √

Perfect G(1)
√

×
Abelian G(1) ×

√

Abelianizes to Z
√ √

Z HNN−−−−→
split

· · · HNN−−−−→
split

G
√ √

Moreover, gk is the commutator of itself with another element, g = w(gk), of Gk. So, if
Gk is the fundamental group of a high-dimensional manifold, Mk, then gk bounds a disk
with one handle in Mk where one of the handle curves is homotopic (rel basepoint) to gk.
We let this be the meridianal handle curve:

We can attach a two handle to Mk along gk. Then, the disk with handle and three copies
of the core of the two handle form a 2-sphere, S2

k, along which a three handle can be
attached.



Note that this S2
k will algebraically cancel the 2-disk since it will be attached twice with

one sign and once with the opposite sign. As a result the manifold, Nk, resulting from
attaching these two handles to Mk, will have the same homology as Mk. In fact, we
obtain a cobordism,

(
Wk,Mk,Nk

)
, where the inclusion Nk → Wk induces an equivalence

of homology groups.

This inclusion also induces an isomorphism on fundamental groups: π1 (Nk)
∼=−→ π1 (Wk) ∼=

Gk−1. One might conclude that Nk →Wk induces a homotopy equivalence. However, this
is the case only for Adams group.

The Hurewitz Theorem is needed to argue from data about homology to conclusions about
homotopy. It requires simply connected spaces. Thus, we must pass to the universal covers,
W̃k and Ñk, of the manifolds, Wk and Nk and the cover, M̂k, of the manifold, Mk, that
corresponds to the π1-kernel of the induced map, π1 (Mk) → π1 (Wk).

The key becomes the longitudinal curve, g, on the disk-with-handle (shown below in bold).



It is quite different for the Ak and Bk. For Adams group, g = a
ai−1
i = a−1

i−1aiai−1 while
for the Baumslag-Solitar group, g = ai−1. In the first case, the element, g = a−1

i−1aiai−1,
is a conjugate of ai, and, in particular, lifts as a loop to M̂ . Consequently, the same
cancellation in homology occurs in the universal cover as in the space itself and, thus,
homology equivalences will yield a homotopy equivalence. In the second case, the conju-
gating element, bi−1, lifts as an arc to M̂ . Thus, the two copies of the core of the 2-handle
that cancelled as elements of H2 (W,M) represent distinct generators of H2

(
W̃ , M̂

)
that

have different signs but, in fact, do not cancel.
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