
Neighborhoods of crumpled manifold boundaries

by F. C. Tinsley

I. Setting: Let Sn denote the n-sphere and let h : Sn−1 → Sn be an embedding. Identify
Sn−1 with h(Sn−1). In other words, assume Sn−1 sits in Sn. Then, Sn−1 separates Sn

into two components. Denote the closure of one of these components by Cn. We call Cn

a crumpled cube. Observe that bdy(Cn) = Sn−1 naturally.

Example 1: Think of Sn−1 in Rn as the set of points a distance one from the origin and
Sn as the one-point compactification of Rn. Then the crumpled cube containing the origin
is, in fact, a cell.

Definition 1: Sn−1 is tame in Cn if Cn is a cell. Otherwise, Sn−1 is wild in Cn.

We also may refer to a cell as a trivial crumpled cube.

Example 2: The most famous example of a wild sphere is Alexander’s Horned Sphere
(n = 3) shown below in R3. S2 is wild in its bounded component, C3. Specifically, its
interior, C3\S2, is not simply connected and so cannot be the interior of a cell. The loop
labeled by an arrow does not bound a disk in C3 missing S2.

II. Some History: The study of wild embeddings of spheres has a rich history extending
back more than half a century. In particular, myriads of necessary and sufficient conditions
for a crumpled cube to be a cell have been developed. Morton Brown developed the
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following characterization that is valid in all dimensions:

Proposition 1: A crumpled cube, Cn, is a cell if and only if Sn−1 is collared in Cn, ie,
if and only if there is an embedding c : Sn−1 × [0, 1] → Cn with c0|Sn−1 the identity.

A second, highly useful characterization was developed. This result is due to R. H. Bing
in dimension 3, Frank Quinn in dimensions 4 and 5, and Bob Daverman in dimensions 6
and higher.

Proposition 2: A crumpled cube, Cn, is a cell if and only if Sn−1 has 1-LCC complement
in Cn, ie, given any x ∈ Sn−1 and ε > 0 there is a δ > 0 so that loops in Nδ (x,Cn) \Sn−1

bound 2-disks in Nε (x,Cn) \Sn−1.

In short, Cn is a cell if and only if small loops near Sn−1 and missing Sn−1 bound small
disks near Sn−1 and missing Sn−1.

One obviously necessary condition for tameness still remains a candidate for also being
a sufficient condition. Sn−1 is free in Cn if for each ε > 0 there is a map fε : Sn−1 →
Cn\Sn−1 with d(x, f(x)) < ε for all x ∈ Sn−1.

Free Sphere Question: Suppose Sn−1 is free in Cn. Is Cn a cell?

III. Strategy of Investigation:

For n = 3, the free surface question is an extremely difficult and well-known unsolved
problem. Also, Bob Daverman has developed methods for ”inflating” examples of crumpled
cubes from dimension n to dimension n + 1. These facts suggest that the answer to the
question is YES for n = 3 and NO for n > 3. From 1985-1995, Daverman and I constructed
many new, intrinsically high-dimensional examples of non-trivial crumpled cubes. This
research focuses on whether our new knowledge has anything to say about the free surface
question in high dimensions.

We begin with what may be an easier question. For n = 3 it is well known that if S2 is
free in C3, then C3\S2 is homeomorphic to an open 3-cell. The proof relies on the Sphere
Theorem, an intrinsically 3-dimensional result.

Possibly Easier Question: Suppose n > 3 and Sn−1 is free in Cn, then is Cn\Sn−1

homeomorphic to an open (n-1)-cell?
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IV. Some Progress:

We focus for a moment on a small loop, s, in Cn\Sn−1 near Sn−1 and categorize what s
may bound in order of increasing nastiness.

1. s bounds a small disk in Cn\Sn−1 near Sn−1.
2. s bounds a large disk in Cn\Sn−1 near Sn−1.
3. s bounds a half-open annulus properly embedded in Cn\Sn−1 near Sn−1.
4. s bounds a small disk with a Cantor set’s worth of holes properly embedded in

Cn\Sn−1 near Sn−1.

Comments:

1. This is the 1-LCC complement condition referred to above. So, Sn−1 is tame in Cn.

2. This condition implies that Cn\Sn−1 is homeomorphic to the interior of an n-disk. It
often is described by saying Cn\Sn−1 is 1-LC at infinity.

3. Alternatively, we may say that s can be ”tubed to infinity”. In our setting, this is
equivalent to En\Sn−1 being outward tame, ie, closed subsets of En\Sn−1 near Sn−1 can
be homotoped in En\Sn−1 arbirarily close to Sn−1. (See the article by Craig Guilbault in
these proceedings.)

4. In general, this is the most we can hope for. However, a bit more is true. Any loop, s,
can be made to bound a 2-disk in Cn so that the preimage in this disk of its intersection
with Sn−1 is a compact 0-dimensional set.

We show that crumpled cubes that belong to our category 3 and have Sn−1 free in Cn

also have Euclidean interior.

Proposition 3: Suppose Sn−1 is free in Cn and given any neighborhood U of Sn−1 in
Cn there is a neighborhood V of Sn−1 in Cn such that any loop s in V can be tubed to
infinity in U . Then Cn\Sn−1 ∼= Rn.

Proof: We need to show that loops close to Sn−1 in Cn\Sn−1 bound disks close to Sn−1

in Cn\Sn−1 (the 1-LC at ∞ condition).

To this end, let U be an arbitrary neighborhood of Sn−1 in Cn. Let V be the neighborhood
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Sn−1 in Cn satisfying the hypthesis of this theorem. Let s be an arbitrary loop in V \Sn−1.
Then, s bounds a half-open annulus, A ∼= S1× [0,∞), entirely contained in U and properly
embedded in Cn\Sn−1.

Let ε > 0 be a small positive number and, by freeness, let f : Sn−1 → Cn\Sn−1 be an
ε-map. If ε is small enough, then f(Sn−1) ⊂ V , f(Sn−1) will separate s from Sn−1, and
f will be a degree one map. Assume that f is in general position with respect to itself
and A. Since A is embedded, f−1(A) is a finite union of simple closed curves in Sn−1, say
s1, s2, · · · , sm. Finally, for at least one j, f |sj : S1 → A is essential at the π1 level since f
is of degree one (we the details of this argument to the reader).

Let p : Ũ → U be the universal covering space of U . Since Sn−1 is simply connected, the
map f lifts to a map f̃ : Sn−1 → Ũ . Consider a component, Ã, of p−1(A). Now, Ã must
be either a half-plane or again an annulus. But, Ã cannot be a half-plane because, on the
one hand, f |sj is essential and would lift to a line but, on the other hand, f |sj must lift
to a loop since sj ⊂ Sn−1 and f lifts. Thus, Ã is a half-open annulus.

Then f |Ã : Ã → A is a k to 1 map for some positive integer k. We argue that k = 1. Let
α = ∗ × [0,∞) be an arc in A running from ∗ ∈ s out to Sn−1. Without loss of generality,
assume f and α are in general position so that their intersection is a finite number of
points. Using orientations on Sn−1, Cn, and α, we may assign a +1 or a −1 to each point
of intersection. Since f is of degree one, the sum of these must be +1 or −1. However,
since f |si lifts to Ã for each i, 1 ≤ i ≤ m, the sum must be congruent to 0 mod k. The
only possibility is for k = 1.

V. Closing:

What makes our category 3 tractible is that the annulus, A, is a has an abelian fundamental
group (Z). As a result, study of the covering spaces of A is straightforward. The situation
in general is considerably more complicated. We are led to understanding the intersections
between f and disks with more than one hole. These objects have free fundamental groups
with more than one generator and, thus, have a plethora of covering spaces.

The possible advantage to this complexity is that it may make aid in finding a counterex-
ample. We close with a specific intersection pattern that would allow us possibly to use the
our constructions referred to above. We abbreviate the commutator of two group elements,
a and b, by [a, b], ie, a−1b−1ab = [a, b].

Final Question: Let G be Higman’s group presented with four generators and four
relators as

〈ai|ai = [ai, ai+1], a5 = a1 1 ≤ i ≤ 4〉
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Is there a non-trivial crumpled cube Cn with Sn−1 free in Cn, a loop s bounding a disk
with four holes H, and a map f : Sn−1 → Cn\Sn−1 whose intersection pattern with H
yields Higman’s group?

We illustrate H with only the first of the four relators, a1 = [a1, a2]. There would be three
similar curves relating the other consecutive pairs of holes:
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