
FYE Block 2 Midterm

1. (10 pts) ∫
x − 4

x2 − 5x + 6
dx

We use partial fractions:

x − 4

x2 − 5x + 6
=

A

x− 2
+

B

x− 3

and so we have
x − 4 = B(x− 2) + A(x − 3).

Evaluating at x = 2 gives −2 = −A, or A = 2. Evaluating at x = 3
gives −1 = B. We thus have:
∫

x − 4

x2 − 5x + 6
dx = 2

∫
dx

x − 2
−

∫
dx

x − 3
dx = 2 ln(x−2)−ln(x−3)+C

.

2. (11pts) ∫
x4

x2 + 4
dx

We divide to get that

x4

x2 + 4
= x2 − 4 +

16

x2 + 4
.

If we integrate this term-by-term, we get x3/3−4x+8 tan−1(x/2). (You
might feel the need to make the trig substitution x = 2 tan θ to do the
last integral.)

3. (10 pts) ∫
x sec2 xdx

We should use integration by parts. Set u = x and dv = sec2 xdx.
Then du = dx and v = tan x. We then have

∫
x sec2 xdx = x tanx −

∫
tan xdx = x tan x − ln(secx) + C.
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4. (11 pts) ∫
sin2 θ cos3 θdθ

We have an odd power of cosine and so this is the “easy” case: We use
the fundamental trig identity to get this:

∫
sin2 θ cos3 θdθ =

∫
sin2 θ(1 − sin2 θ) cos θdθ.

Now the substitution u = sin θ makes this
∫

(u2 − u4)du = u3/3 − u5/5 + C = sin3 θ/3 − sin5 θ/5 + C.

5. (10 pts) ∫
1

x2 + 4x + 5
dx

The denominator is an irreducible quadratic, and so we must complete
the square. We get x2 + 4x + 5 = (x2 + 4x + 4) + 1 = (x + 2)2 + 1.
Consequently, this integral is tan−1(x + 2) + C.

6. (12pts) ∫ √
9 − x2dx

We use the substitution x = 3 sin θ. Then dx = 3 cos θdθ, and so
∫ √

9 − x2dx = 9

∫
cos2 θdθ.

We use the appropriate trig identity to obtain

(9/2)

∫
(1 + cos(2θ))dθ =

9

2

(
θ +

1

2
sin 2θ

)
+ C.

Now θ = sin−1(x/3). But by another trig identity,

sin(2θ) = 2 sin(θ) cos(θ) = 2
x

3

√
9 − x2

3
+ C.

Putting these together, we have the answer

9

2
sin−1(x/3) +

x
√

9 − x2

2
+ C.
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7. (10 pts) Consider the lump of the parabola y = 4x − x2 − 3 extending
above the x-axis in the first quadrant. Rotate this lump around the
y-axis. Set up a well-formed integral to compute the resulting volume
of revolution.

Notice that the parabola hits the x-axis when 0 = x2 − 4x + 3 =
(x − 1)(x − 3). That is, x = 1 or x = 3. We now use the concentric
shell formula dV = 2πrhdx = 2πxydx = 2πx(4x − x2 − 3)dx. The
correct definite integral is thus

2π

∫ 3

1

(4x2 − x3 − 3x)dx.

8. (12 pts) Compute the area under the curve f(x) = xe−x, for 1 ≤ x < ∞.
We need to compute the improper integral

∫ ∞

1

xe−xdx.

But to do this, we first need to do integration by parts! Let’s compute
the antiderivative, using the parts u = x and dv = e−xdx. Then
du = dx and v = −e−x. Then we have
∫

xe−xdx = −xe−x +

∫
e−xdx = −xe−x − e−x +C = −(x+1)e−x +C.

We then have limb→∞((−be−b − e−b) − (−1e−1 − e−1)) = 2/e.

9. (4 pts) Define what it means for a set to be finite. A set is finite
exactly if it can be placed in a one-to-one correspondence with an
initial segment of the set of counting numbers.

10. (10 pts) Consider the set T of all two element subsets of the counting
numbers N. Argue that this set of subsets is countably infinite, by
providing a procedure by which they can all be counted.

We can systematically put all these sets in an infinite triangular array.
In the first row, put all such subsets that contain the element 1; in the
next row include all subsets that contain 2, but not 1. In the next row
include all subsets that contain 3, but neither 1 nor 2. We get a picture
something like this:
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1,2 1,3 1,4 1,5 1,6 1,7 1,8 · · ·
2,3 2,4 2,5 2,6 2,7 2,8 · · ·

3,4 3,5 3,6 3,7 3,8 · · ·
4,5 4,6 4,7 4,8 · · ·

5,6 5,7 5,8 · · ·
· · · · · ·

There are a number of ways to thread through this array systematically
to visit all such subsets exactly once. For example, move vertically
down the columns, from left to right. This works because each of the
columns has finitely many entries!
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