
1 Masses

We have used calculus to make geometric calculations of lengths, areas and
volumes (the full story about volumes awaits Calculus III); we have associated
with these calculations such units as meters, square feet and cubic centimeters.
But in the real world we can think of physical objects existing in these geometric
regions, and these physical objects have what physicists call mass. The mass is
a physical quantity measured in some such units as grams or pounds.

Typically, a physical substance is not uniformly spread over a geometric area
– a wire might be heavier along part of its length, or a plate might be thicker
in some regions than in others. This leads us to the concept of density. We can
think of this as a function of the geometric region in which the object exists – it
is actually a derivative of mass with respect to the appropriate geometric units!

Sometimes the mass of an object is uniformly spread about in the geometric
region. In this case we say that the object has uniform density: the density
function is a constant!

For an example of varying density, suppose that a wire rests on the positive
x-axis, for 1 ≤ x ≤ 4, where we measure x in feet. The density might then
be a function like δ(x) = 2x. This means that as we move to the right on the
wire, it grows heavier and heavier. The units for this density function should
be something like pounds per foot. This is really because δ(x) = dm

dx : we take
an infinitesmal slice of the wire dx, and compute its mass dm in pounds, and
then the ratio gives us the (varying) density at any point along the wire. For
example, δ(3) = 6, which means that near x = 3 the wire weighs 6 pounds per
foot.

We then have a corresponding equation of differentials: dm = δ(x)dx. This
means that to compute the total mass of the wire, we need only compute an
integral: ∫ 4

1

δ(x)dx =
∫ 4

1

2xdx = 15 pounds

For two-dimensional areas, density would in principle be a function of the
two variables x and y – for that full story, we need Calculus III. But we can
consider areas where the density might vary with respect to only one of these
variables.

For example, consider the triangular region in the first quadrant bounded by
y = 2x, the x-axis, and the line x = 3. Suppose further that a metal plate rests
on this area, and its density varies with the distance from the y-axis, according
to the function δ(x) = x2. (We could think of the plate as getting thicker and
thicker, or made of material more and more like that found on Tlön.) Notice
that the density of the triangle at the tip at the origin is actually 0.

To compute the area we would need the differential dA = 2xdx. But to
compute the mass, we need the differential dm = δ(x)dA = x2 · 2xdx = 2x3dx.
We obtain the following mass:

m =
∫

dm =
∫

δ(x)dA =
∫ 3

0

2x3dx =
81
2
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Notice that this calculation only works because the density of the infinitesimal
vertical slice is uniform moving up and down, that is, in y.

2 Moments and Centers of Mass

We all know from our experience on a teeter-totter that a smaller person can
counterbalance a heavier person either by gaining weight, or by moving further
away from the fulcrum. Archimedes said that he could move the world if he
could choose his lever and fulcrum! The crucial calculation is to counterbalance
“moments”: the product of a length times a mass.

Let’s look at this in the wire example above: suppose that we take an in-
finitesmal slice dx, with mass dm. The amount of torque on the wire measured
from the origin is then the distance to the origin times the mass of the slice:
dM = xdm. The capital M stands for moment (actually, first moment, to dis-
tinguish it from the moment of inertia, a concept we won’t go into). Thus, we
can compute the total first moment by doing an integral of dM .

In our particular example we get the following:

M =
∫

dM =
∫

xdm =
∫ 4

1

2x2dx =
126
3

Now comes the crucial definition: we look for a point called the center of
mass, at which we could concentrate all the mass, and still have the same first
moment! In a one-dimensional problem we are only looking for the x coordinate,
and we denote that coordinate by x̄. The equation we then get is this one (where
we have suppressed the endpoints of integration):

x̄

∫
dm =

∫
dM =

∫
xdm

The left side of this equation is a moment calculation: distance times mass. The
right side of the this equation is an infinitesismal version of a moment equation.

In practice, we solve for x̄:

x̄ =
∫

xdm∫
dm

In the example of the wire this gives us the following:

x̄ =
(126/3)

15
= 2.8

If we are computing the center of mass of a two-dimensional object (like the
plate above), we will need to compute two coordinates (x̄, ȳ). We will need two
moments: the moment about the y-axis My and the moment about the x-axis
Mx. If we take a vertical slice of our area (as we did in the triangular example
above) we then have an infinitesimal slice of moment dMy = xdm to integrate,
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before we compute the x-coordinate by computing x̄ =
∫

dMy∫
dm

. We’ve already

computed the denominator (the mass of the plate) above: it is just 81/2. The
numerator is

∫
dMy =

∫
xdm =

∫ 3

0

x · 2x3

∫ 3

0

2x4dx =
486
5

.

We can then compute x̄ as follows:

x̄ =
486
5
81
2

=
12
5

.

The computation of the y-coordinate of the center of mass of our triangular
plate is a good bit trickier. We’d like to take a horizontal slice when computing
Mx, because we’d like a slice at a fixed distance from the x-axis (remember that
the x in the subscript reminds us that we are computing a distance to the x-axis.
However, in this example, the density is not uniform along such a horizontal
slice.

Consequently, we can do a trick, and still use the vertical slice. The difference
is this: the infinitesimal vertical slice has a center of mass of its own, and it is
clearly in the middle of the slice. This means that the piece of moment about the
x-axis can be computed by the following: dMx = (1/2)ydm = (1/2)(2x)dm =
x ·2x3dx = 2x4dx. We can then compute the y-coordinate of the center of mass
of our non-uniform plate as this:

ȳ =
Mx

m
=

∫
dMx

81/2
=

∫ 3

0
2x4dx

81/2
=

12
5

Note that the mass is the same, and we’ve already computed it, and so I just
plugged it in! In this example, the x̄ and ȳ are the same, even though the
triangle is taller than it is wide. This is because the triangle gets denser as we
move from left to right, but stays uniform when we move up and down.
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